Loading…

Altered top-down and bottom-up processing of fear conditioning in panic disorder with agoraphobia

Although several neurophysiological models have been proposed for panic disorder with agoraphobia (PD/AG), there is limited evidence from functional magnetic resonance imaging (fMRI) studies on key neural networks in PD/AG. Fear conditioning has been proposed to represent a central pathway for the d...

Full description

Saved in:
Bibliographic Details
Published in:Psychological medicine 2014-01, Vol.44 (2), p.381-394
Main Authors: Lueken, U., Straube, B., Reinhardt, I., Maslowski, N. I., Wittchen, H.-U., Ströhle, A., Wittmann, A., Pfleiderer, B., Konrad, C., Ewert, A., Uhlmann, C., Arolt, V., Jansen, A., Kircher, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although several neurophysiological models have been proposed for panic disorder with agoraphobia (PD/AG), there is limited evidence from functional magnetic resonance imaging (fMRI) studies on key neural networks in PD/AG. Fear conditioning has been proposed to represent a central pathway for the development and maintenance of this disorder; however, its neural substrates remain elusive. The present study aimed to investigate the neural correlates of fear conditioning in PD/AG patients. The blood oxygen level-dependent (BOLD) response was measured using fMRI during a fear conditioning task. Indicators of differential conditioning, simple conditioning and safety signal processing were investigated in 60 PD/AG patients and 60 matched healthy controls. Differential conditioning was associated with enhanced activation of the bilateral dorsal inferior frontal gyrus (IFG) whereas simple conditioning and safety signal processing were related to increased midbrain activation in PD/AG patients versus controls. Anxiety sensitivity was associated positively with the magnitude of midbrain activation. The results suggest changes in top-down and bottom-up processes during fear conditioning in PD/AG that can be interpreted within a neural framework of defensive reactions mediating threat through distal (forebrain) versus proximal (midbrain) brain structures. Evidence is accumulating that this network plays a key role in the aetiopathogenesis of panic disorder.
ISSN:0033-2917
1469-8978
DOI:10.1017/S0033291713000792