Loading…

Estimating the propagation characteristics of large-scale traveling ionospheric disturbances using ground-based and satellite data

In this article, the propagation characteristics of large‐scale traveling ionospheric disturbances (LS TIDs) are estimated during the geomagnetic storm periods of 14–16 May 2005 and 25–27 September 2011 over South Africa. One and two GPS arrays have been independently considered for the storms of 15...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Space physics 2013-12, Vol.118 (12), p.7768-7782
Main Authors: Habarulema, John Bosco, Katamzi, Zama Thobeka, McKinnell, Lee-Anne
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this article, the propagation characteristics of large‐scale traveling ionospheric disturbances (LS TIDs) are estimated during the geomagnetic storm periods of 14–16 May 2005 and 25–27 September 2011 over South Africa. One and two GPS arrays have been independently considered for the storms of 15 May 2005 and 26 September 2011, respectively. The average periods of dominant modes (≈ 2.5–3.5h) in the time series data were determined by applying wavelet analysis on both ionosonde and GPS data. The consideration of diurnal GPS total electron content (TEC) variability from receivers along three different longitude sectors showed a time shift in TEC enhancement with increasing latitude, the first indication of equatorward motion of the traveling ionospheric disturbances (TIDs). The statistical method (based on GPS radio interferometry) employed shows that these TIDs were mostly propagating nearly equatorward (for both storm periods), which is consistent with the existing literature about storm‐induced TIDs. On storm days, TID horizontal velocities have been determined in the range of ≈200–500m/s. The analysis of diurnal TEC response from different stations confirmed that the positive storm effect observed on 15 May 2005 was a result of the large‐scale TIDs of wavelength ≈4000 km. On the other hand, the estimated wavelengths of LS TIDs on 26 September 2011 were ≈2400–3400km between 10 and 17 UT. A time lag is observed between the times at which enhancements in TEC, ionosonde foF2, and hmF2 data are revealed, and this has been attributed to the passage of the TID. Key Points First complete determination of LS TIDs characteristics over South Africa Using a combination of ground based (ionosonde) and satellite data to study TIDs Observed TIDs on 15 May 2005 could have contributed to the positive storm effect
ISSN:2169-9380
2169-9402
DOI:10.1002/2013JA018997