Loading…

How to Combine Long and Short Return Histories Efficiently

A common challenge in portfolio risk analysis is that certain assets have shorter return histories than others. Unfortunately, many standard portfolio risk analysis techniques—including historical tail risk measurement, regime-dependent risk analysis, and bootstrapping simulations—require full retur...

Full description

Saved in:
Bibliographic Details
Published in:Financial analysts journal 2013-01, Vol.69 (1), p.45-52
Main Author: Page, Sébastien
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c405t-6c0ceb1ad9708767ed39cb67b6d8a0e7bb603aac0021f819ac0c172d34df04ee3
cites cdi_FETCH-LOGICAL-c405t-6c0ceb1ad9708767ed39cb67b6d8a0e7bb603aac0021f819ac0c172d34df04ee3
container_end_page 52
container_issue 1
container_start_page 45
container_title Financial analysts journal
container_volume 69
creator Page, Sébastien
description A common challenge in portfolio risk analysis is that certain assets have shorter return histories than others. Unfortunately, many standard portfolio risk analysis techniques—including historical tail risk measurement, regime-dependent risk analysis, and bootstrapping simulations—require full return histories for all assets or risk factors. The author presents easy instructions on how to efficiently combine data for investments whose histories differ in length and offers a new model to better account for non-normal distributions.
doi_str_mv 10.2469/faj.v69.n1.3
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1499081028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23469455</jstor_id><sourcerecordid>23469455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-6c0ceb1ad9708767ed39cb67b6d8a0e7bb603aac0021f819ac0c172d34df04ee3</originalsourceid><addsrcrecordid>eNpd0M9LwzAUwPEgCs7pzasQ8OLB1rymzQ9vMqYTBoI_wFtI01RbukSTTtl_b8bEg6eXBx_C44vQKZC8KJm8anWffzGZO8jpHpqApCKjFIp9NCEEqgykeD1ERzH2aS1oWU3Q9cJ_49HjmV_VnbN46d0b1q7BT-8-jPjRjuvg8KKLow-djXjetp3prBuHzTE6aPUQ7cnvnKKX2_nzbJEtH-7uZzfLzJSkGjNmiLE16EZyIjjjtqHS1IzXrBGaWF7XjFCtDSEFtAJkehngRUPLpiWltXSKLnb_fgT_ubZxVKsuGjsM2lm_jgpKKYkAUohEz__R3qf703UKaFWIinNgSV3ulAk-xmBb9RG6lQ4bBURtQ6oUUqWQyoGiiZ_teL-N8GdTPybLqqI_H1JvsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1352857716</pqid></control><display><type>article</type><title>How to Combine Long and Short Return Histories Efficiently</title><source>EBSCOhost Business Source Ultimate</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>ABI/INFORM global</source><source>Taylor &amp; Francis</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Page, Sébastien</creator><creatorcontrib>Page, Sébastien</creatorcontrib><description>A common challenge in portfolio risk analysis is that certain assets have shorter return histories than others. Unfortunately, many standard portfolio risk analysis techniques—including historical tail risk measurement, regime-dependent risk analysis, and bootstrapping simulations—require full return histories for all assets or risk factors. The author presents easy instructions on how to efficiently combine data for investments whose histories differ in length and offers a new model to better account for non-normal distributions.</description><identifier>ISSN: 0015-198X</identifier><identifier>EISSN: 1938-3312</identifier><identifier>DOI: 10.2469/faj.v69.n1.3</identifier><identifier>CODEN: FIAJA4</identifier><language>eng</language><publisher>Charlottesville: CFA Institute</publisher><subject>Algorithms ; Assets ; Bootstrap mechanism ; Covariance ; Data sampling ; Distribution ; Efficiency ; Estimates ; Great Depression ; History ; Investment ; Investment risk ; Kurtosis ; Mathematical moments ; Maximum likelihood estimation ; Measurement ; Missing data ; Modeling ; Normal distribution ; Portfolio Management ; Predisposing factors ; Recycling ; Return on investment ; Risk ; Risk assessment ; Simulation ; Stocks ; Studies ; Time series ; U.S.A</subject><ispartof>Financial analysts journal, 2013-01, Vol.69 (1), p.45-52</ispartof><rights>2013 CFA Institute</rights><rights>Copyright CFA Institute Jan/Feb 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-6c0ceb1ad9708767ed39cb67b6d8a0e7bb603aac0021f819ac0c172d34df04ee3</citedby><cites>FETCH-LOGICAL-c405t-6c0ceb1ad9708767ed39cb67b6d8a0e7bb603aac0021f819ac0c172d34df04ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1352857716/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1352857716?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,12847,27924,27925,33223,33224,36060,36061,44363,58238,58471,74895</link.rule.ids></links><search><creatorcontrib>Page, Sébastien</creatorcontrib><title>How to Combine Long and Short Return Histories Efficiently</title><title>Financial analysts journal</title><description>A common challenge in portfolio risk analysis is that certain assets have shorter return histories than others. Unfortunately, many standard portfolio risk analysis techniques—including historical tail risk measurement, regime-dependent risk analysis, and bootstrapping simulations—require full return histories for all assets or risk factors. The author presents easy instructions on how to efficiently combine data for investments whose histories differ in length and offers a new model to better account for non-normal distributions.</description><subject>Algorithms</subject><subject>Assets</subject><subject>Bootstrap mechanism</subject><subject>Covariance</subject><subject>Data sampling</subject><subject>Distribution</subject><subject>Efficiency</subject><subject>Estimates</subject><subject>Great Depression</subject><subject>History</subject><subject>Investment</subject><subject>Investment risk</subject><subject>Kurtosis</subject><subject>Mathematical moments</subject><subject>Maximum likelihood estimation</subject><subject>Measurement</subject><subject>Missing data</subject><subject>Modeling</subject><subject>Normal distribution</subject><subject>Portfolio Management</subject><subject>Predisposing factors</subject><subject>Recycling</subject><subject>Return on investment</subject><subject>Risk</subject><subject>Risk assessment</subject><subject>Simulation</subject><subject>Stocks</subject><subject>Studies</subject><subject>Time series</subject><subject>U.S.A</subject><issn>0015-198X</issn><issn>1938-3312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>M0C</sourceid><recordid>eNpd0M9LwzAUwPEgCs7pzasQ8OLB1rymzQ9vMqYTBoI_wFtI01RbukSTTtl_b8bEg6eXBx_C44vQKZC8KJm8anWffzGZO8jpHpqApCKjFIp9NCEEqgykeD1ERzH2aS1oWU3Q9cJ_49HjmV_VnbN46d0b1q7BT-8-jPjRjuvg8KKLow-djXjetp3prBuHzTE6aPUQ7cnvnKKX2_nzbJEtH-7uZzfLzJSkGjNmiLE16EZyIjjjtqHS1IzXrBGaWF7XjFCtDSEFtAJkehngRUPLpiWltXSKLnb_fgT_ubZxVKsuGjsM2lm_jgpKKYkAUohEz__R3qf703UKaFWIinNgSV3ulAk-xmBb9RG6lQ4bBURtQ6oUUqWQyoGiiZ_teL-N8GdTPybLqqI_H1JvsA</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Page, Sébastien</creator><general>CFA Institute</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X1</scope><scope>7XB</scope><scope>87Z</scope><scope>8A9</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ANIOZ</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRAZJ</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20130101</creationdate><title>How to Combine Long and Short Return Histories Efficiently</title><author>Page, Sébastien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-6c0ceb1ad9708767ed39cb67b6d8a0e7bb603aac0021f819ac0c172d34df04ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Assets</topic><topic>Bootstrap mechanism</topic><topic>Covariance</topic><topic>Data sampling</topic><topic>Distribution</topic><topic>Efficiency</topic><topic>Estimates</topic><topic>Great Depression</topic><topic>History</topic><topic>Investment</topic><topic>Investment risk</topic><topic>Kurtosis</topic><topic>Mathematical moments</topic><topic>Maximum likelihood estimation</topic><topic>Measurement</topic><topic>Missing data</topic><topic>Modeling</topic><topic>Normal distribution</topic><topic>Portfolio Management</topic><topic>Predisposing factors</topic><topic>Recycling</topic><topic>Return on investment</topic><topic>Risk</topic><topic>Risk assessment</topic><topic>Simulation</topic><topic>Stocks</topic><topic>Studies</topic><topic>Time series</topic><topic>U.S.A</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Page, Sébastien</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Accounting &amp; Tax Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Accounting &amp; Tax Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Accounting, Tax &amp; Banking Collection (ProQuest)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Accounting, Tax &amp; Banking Collection (Alumni)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM global</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Financial analysts journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Page, Sébastien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to Combine Long and Short Return Histories Efficiently</atitle><jtitle>Financial analysts journal</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>69</volume><issue>1</issue><spage>45</spage><epage>52</epage><pages>45-52</pages><issn>0015-198X</issn><eissn>1938-3312</eissn><coden>FIAJA4</coden><abstract>A common challenge in portfolio risk analysis is that certain assets have shorter return histories than others. Unfortunately, many standard portfolio risk analysis techniques—including historical tail risk measurement, regime-dependent risk analysis, and bootstrapping simulations—require full return histories for all assets or risk factors. The author presents easy instructions on how to efficiently combine data for investments whose histories differ in length and offers a new model to better account for non-normal distributions.</abstract><cop>Charlottesville</cop><pub>CFA Institute</pub><doi>10.2469/faj.v69.n1.3</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0015-198X
ispartof Financial analysts journal, 2013-01, Vol.69 (1), p.45-52
issn 0015-198X
1938-3312
language eng
recordid cdi_proquest_miscellaneous_1499081028
source EBSCOhost Business Source Ultimate; International Bibliography of the Social Sciences (IBSS); ABI/INFORM global; Taylor & Francis; JSTOR Archival Journals and Primary Sources Collection
subjects Algorithms
Assets
Bootstrap mechanism
Covariance
Data sampling
Distribution
Efficiency
Estimates
Great Depression
History
Investment
Investment risk
Kurtosis
Mathematical moments
Maximum likelihood estimation
Measurement
Missing data
Modeling
Normal distribution
Portfolio Management
Predisposing factors
Recycling
Return on investment
Risk
Risk assessment
Simulation
Stocks
Studies
Time series
U.S.A
title How to Combine Long and Short Return Histories Efficiently
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A16%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20Combine%20Long%20and%20Short%20Return%20Histories%20Efficiently&rft.jtitle=Financial%20analysts%20journal&rft.au=Page,%20S%C3%A9bastien&rft.date=2013-01-01&rft.volume=69&rft.issue=1&rft.spage=45&rft.epage=52&rft.pages=45-52&rft.issn=0015-198X&rft.eissn=1938-3312&rft.coden=FIAJA4&rft_id=info:doi/10.2469/faj.v69.n1.3&rft_dat=%3Cjstor_proqu%3E23469455%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-6c0ceb1ad9708767ed39cb67b6d8a0e7bb603aac0021f819ac0c172d34df04ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1352857716&rft_id=info:pmid/&rft_jstor_id=23469455&rfr_iscdi=true