Loading…
Metal–Organic Coordination-Enabled Layer-by-Layer Self-Assembly to Prepare Hybrid Microcapsules for Efficient Enzyme Immobilization
A novel layer-by-layer self-assembly approach enabled by metal–organic coordination was developed to prepare polymer-inorganic hybrid microcapsules. Alginate was first activated via N-ethyl-N′-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) coupling chemistry, and subseque...
Saved in:
Published in: | ACS applied materials & interfaces 2012-07, Vol.4 (7), p.3476-3483 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel layer-by-layer self-assembly approach enabled by metal–organic coordination was developed to prepare polymer-inorganic hybrid microcapsules. Alginate was first activated via N-ethyl-N′-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) coupling chemistry, and subsequently reacted with dopamine. Afterward, the dopamine modified alginate (Alg-DA) and titanium(IV) bis(ammonium lactato) dihydroxide (Ti(IV)) were alternatively deposited onto CaCO3 templates. The coordination reaction between the catechol groups of Alg-DA and the Ti(IV) allowed the alternative assembly to form a series of multilayers. After removing the templates, the alginate-titanium hybrid microcapsules were obtained. The high mechanical stability of hybrid microcapsules was demonstrated by osmotic pressure experiment. Furthermore, the hybrid microcapsules displayed superior thermal stability due to Ti(IV) coordination. Catalase (CAT) was used as model enzyme, either encapsulated inside or covalently attached on the surface of the resultant microcapsules. No CAT leakage from the microcapsules was detected after incubation for 48 h. The encapsulated CAT, with a loading capacity of 450–500 mg g–1 microcapsules, exhibited desirable long-term storage stability, whereas the covalently attached CAT, with a loading capacity of 100–150 mg g–1 microcapsules, showed desirable operational stability. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/am300559j |