Loading…

Modeling and Simulation of the Effect of Proton Pump Inhibitors on Magnesium Homeostasis. 1. Oral Absorption of Magnesium

Prolonged use of proton pump inhibitors has reportedly caused rare clinically symptomatic hypomagnesemia. A review of the literature suggests PPI drugs may impair intestinal magnesium absorption. With the goal of preventing PPI-induced hypomagnesemia, an oral absorption-centric model was developed b...

Full description

Saved in:
Bibliographic Details
Published in:Molecular pharmaceutics 2012-12, Vol.9 (12), p.3495-3505
Main Authors: Bai, Jane P. F, Hausman, Ethan, Lionberger, Robert, Zhang, Xinyuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Prolonged use of proton pump inhibitors has reportedly caused rare clinically symptomatic hypomagnesemia. A review of the literature suggests PPI drugs may impair intestinal magnesium absorption. With the goal of preventing PPI-induced hypomagnesemia, an oral absorption-centric model was developed by referencing literature data. Our modeling with human data reveals that magnesium absorption is substantial in the distal intestine. We then perform simulations by referring to the reported reduction in mid to distal intestinal pH caused by one week of oral esomeprazole, and to reported reduction of the divalent cation-sensitive current when the carboxyl side chains of glutamic and aspartic residues in the binding channels of TRPM6/TRPM7 were neutralized. Our simulations reveal that short-term PPI therapy may cause a very small reduction (5%) in the serum magnesium level, which is qualitatively consistent with the reported 1% reduction in magnesium absorption following 1 week of omeprazole in humans. Simulations provide insight into the benefit of frequent but small dose of magnesium supplementation in maintaining the serum magnesium level when magnesium deficiency occurs.
ISSN:1543-8384
1543-8392
DOI:10.1021/mp300323q