Loading…
Fabrication of Liquid and Vapor Protective Cotton Fabrics
Through microwave-assisted techniques, cotton textiles treated with heptadecafluoro-1,1,2,2-tetrahydrodecyltrimethoxysilane in the presence of high surface area silica nanoparticles create a material capable of repelling bulk liquid challenges while simultaneously adsorbing organic vapors from bulk...
Saved in:
Published in: | Langmuir 2013-12, Vol.29 (48), p.15043-15050 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Through microwave-assisted techniques, cotton textiles treated with heptadecafluoro-1,1,2,2-tetrahydrodecyltrimethoxysilane in the presence of high surface area silica nanoparticles create a material capable of repelling bulk liquid challenges while simultaneously adsorbing organic vapors from bulk liquid droplets. Characterizing the contradictory behavior of adsorption of vapors and repellency of liquids is the primary focus of this article. These procedures reveal a quick and simple method for a one-step deposition of a vapor-sorptive, liquid-repellent, Cassie–Baxter surface onto textiles. Packed column breakthrough and single swatch permeation experiments showed that treated materials possess a high affinity for 3-hepten-2-one vapor, while goniometry revealed contact angles in excess of 120° for surface-deposited, 5 μL droplets of several test liquids. Scanning electron micrograph images confirm a lotus-like, nanorough surface, while ATR-FTIR spectra confirm surface fluorocarbon moieties. The performance of so-treated materials lends itself to the application of chemical protective apparel, while the simplicity of the treatment bodes well for potential commercialization. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/la403266r |