Loading…

A fast operation of nanometer-scale metallic memristors: highly transparent conductance channels in Ag2S devices

The nonlinear transport properties of nanometer-scale junctions formed between an inert metallic tip and an Ag film covered by a thin Ag2S layer are investigated. Suitably prepared samples exhibit memristive behavior with technologically optimal ON and OFF state resistances yielding to resistive swi...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2014-03, Vol.6 (5), p.2613-2617
Main Authors: Geresdi, Attila, Csontos, Miklós, Gubicza, Agnes, Halbritter, András, Mihály, György
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2617
container_issue 5
container_start_page 2613
container_title Nanoscale
container_volume 6
creator Geresdi, Attila
Csontos, Miklós
Gubicza, Agnes
Halbritter, András
Mihály, György
description The nonlinear transport properties of nanometer-scale junctions formed between an inert metallic tip and an Ag film covered by a thin Ag2S layer are investigated. Suitably prepared samples exhibit memristive behavior with technologically optimal ON and OFF state resistances yielding to resistive switching on the nanosecond time scale. Utilizing point contact Andreev reflection spectroscopy, we studied the nature of electron transport in the active volume of memristive junctions showing that both the ON and OFF states correspond to truly nanometer-scale, highly transparent metallic channels. Our results demonstrate the merits of Ag2S nanojunctions as nanometer-scale memory cells which can be switched by nanosecond voltage pulses.
doi_str_mv 10.1039/c3nr05682a
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1499141894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1499141894</sourcerecordid><originalsourceid>FETCH-LOGICAL-p247t-fcfd5fb89f75a2dc5a769f165971cf359c94fecd48dc7c72dc72109df1de17bf3</originalsourceid><addsrcrecordid>eNo1kLtOwzAYRi0kREth4QGQR5aAb4ljtqriJlViAObI_W23Ro4TbAeJtycSZfrOcHSGD6ErSm4p4eoOeEykblqmT9CSEUEqziVboPOcPwlpFG_4GVowIVrKuFqicY2dzgUPo026-CHiweGo49DbYlOVQQeLZ9YheJihTz6XIeV7fPD7Q_jBJemYR51sLBiGaCYoOoLFcNAx2pCxj3i9Z2_Y2G8PNl-gU6dDtpfHXaGPx4f3zXO1fX162ay31ciELJUDZ2q3a5WTtWYGai0b5WhTK0nB8VqBEs6CEa0BCXI2JKNEGUeNpXLn-Ard_HXHNHxNNpeu9xlsCDraYcodFUpRQVslZvX6qE673ppuTL7X6af7f4n_AgDWadc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1499141894</pqid></control><display><type>article</type><title>A fast operation of nanometer-scale metallic memristors: highly transparent conductance channels in Ag2S devices</title><source>Royal Society of Chemistry Journals</source><creator>Geresdi, Attila ; Csontos, Miklós ; Gubicza, Agnes ; Halbritter, András ; Mihály, György</creator><creatorcontrib>Geresdi, Attila ; Csontos, Miklós ; Gubicza, Agnes ; Halbritter, András ; Mihály, György</creatorcontrib><description>The nonlinear transport properties of nanometer-scale junctions formed between an inert metallic tip and an Ag film covered by a thin Ag2S layer are investigated. Suitably prepared samples exhibit memristive behavior with technologically optimal ON and OFF state resistances yielding to resistive switching on the nanosecond time scale. Utilizing point contact Andreev reflection spectroscopy, we studied the nature of electron transport in the active volume of memristive junctions showing that both the ON and OFF states correspond to truly nanometer-scale, highly transparent metallic channels. Our results demonstrate the merits of Ag2S nanojunctions as nanometer-scale memory cells which can be switched by nanosecond voltage pulses.</description><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c3nr05682a</identifier><identifier>PMID: 24481239</identifier><language>eng</language><publisher>England</publisher><ispartof>Nanoscale, 2014-03, Vol.6 (5), p.2613-2617</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24481239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Geresdi, Attila</creatorcontrib><creatorcontrib>Csontos, Miklós</creatorcontrib><creatorcontrib>Gubicza, Agnes</creatorcontrib><creatorcontrib>Halbritter, András</creatorcontrib><creatorcontrib>Mihály, György</creatorcontrib><title>A fast operation of nanometer-scale metallic memristors: highly transparent conductance channels in Ag2S devices</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>The nonlinear transport properties of nanometer-scale junctions formed between an inert metallic tip and an Ag film covered by a thin Ag2S layer are investigated. Suitably prepared samples exhibit memristive behavior with technologically optimal ON and OFF state resistances yielding to resistive switching on the nanosecond time scale. Utilizing point contact Andreev reflection spectroscopy, we studied the nature of electron transport in the active volume of memristive junctions showing that both the ON and OFF states correspond to truly nanometer-scale, highly transparent metallic channels. Our results demonstrate the merits of Ag2S nanojunctions as nanometer-scale memory cells which can be switched by nanosecond voltage pulses.</description><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo1kLtOwzAYRi0kREth4QGQR5aAb4ljtqriJlViAObI_W23Ro4TbAeJtycSZfrOcHSGD6ErSm4p4eoOeEykblqmT9CSEUEqziVboPOcPwlpFG_4GVowIVrKuFqicY2dzgUPo026-CHiweGo49DbYlOVQQeLZ9YheJihTz6XIeV7fPD7Q_jBJemYR51sLBiGaCYoOoLFcNAx2pCxj3i9Z2_Y2G8PNl-gU6dDtpfHXaGPx4f3zXO1fX162ay31ciELJUDZ2q3a5WTtWYGai0b5WhTK0nB8VqBEs6CEa0BCXI2JKNEGUeNpXLn-Ard_HXHNHxNNpeu9xlsCDraYcodFUpRQVslZvX6qE673ppuTL7X6af7f4n_AgDWadc</recordid><startdate>20140307</startdate><enddate>20140307</enddate><creator>Geresdi, Attila</creator><creator>Csontos, Miklós</creator><creator>Gubicza, Agnes</creator><creator>Halbritter, András</creator><creator>Mihály, György</creator><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20140307</creationdate><title>A fast operation of nanometer-scale metallic memristors: highly transparent conductance channels in Ag2S devices</title><author>Geresdi, Attila ; Csontos, Miklós ; Gubicza, Agnes ; Halbritter, András ; Mihály, György</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p247t-fcfd5fb89f75a2dc5a769f165971cf359c94fecd48dc7c72dc72109df1de17bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geresdi, Attila</creatorcontrib><creatorcontrib>Csontos, Miklós</creatorcontrib><creatorcontrib>Gubicza, Agnes</creatorcontrib><creatorcontrib>Halbritter, András</creatorcontrib><creatorcontrib>Mihály, György</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geresdi, Attila</au><au>Csontos, Miklós</au><au>Gubicza, Agnes</au><au>Halbritter, András</au><au>Mihály, György</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fast operation of nanometer-scale metallic memristors: highly transparent conductance channels in Ag2S devices</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2014-03-07</date><risdate>2014</risdate><volume>6</volume><issue>5</issue><spage>2613</spage><epage>2617</epage><pages>2613-2617</pages><eissn>2040-3372</eissn><abstract>The nonlinear transport properties of nanometer-scale junctions formed between an inert metallic tip and an Ag film covered by a thin Ag2S layer are investigated. Suitably prepared samples exhibit memristive behavior with technologically optimal ON and OFF state resistances yielding to resistive switching on the nanosecond time scale. Utilizing point contact Andreev reflection spectroscopy, we studied the nature of electron transport in the active volume of memristive junctions showing that both the ON and OFF states correspond to truly nanometer-scale, highly transparent metallic channels. Our results demonstrate the merits of Ag2S nanojunctions as nanometer-scale memory cells which can be switched by nanosecond voltage pulses.</abstract><cop>England</cop><pmid>24481239</pmid><doi>10.1039/c3nr05682a</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2040-3372
ispartof Nanoscale, 2014-03, Vol.6 (5), p.2613-2617
issn 2040-3372
language eng
recordid cdi_proquest_miscellaneous_1499141894
source Royal Society of Chemistry Journals
title A fast operation of nanometer-scale metallic memristors: highly transparent conductance channels in Ag2S devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A50%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fast%20operation%20of%20nanometer-scale%20metallic%20memristors:%20highly%20transparent%20conductance%20channels%20in%20Ag2S%20devices&rft.jtitle=Nanoscale&rft.au=Geresdi,%20Attila&rft.date=2014-03-07&rft.volume=6&rft.issue=5&rft.spage=2613&rft.epage=2617&rft.pages=2613-2617&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c3nr05682a&rft_dat=%3Cproquest_pubme%3E1499141894%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p247t-fcfd5fb89f75a2dc5a769f165971cf359c94fecd48dc7c72dc72109df1de17bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1499141894&rft_id=info:pmid/24481239&rfr_iscdi=true