Loading…

Biocompatible and Highly Luminescent Near-Infrared CuInS2/ZnS Quantum Dots Embedded Silica Beads for Cancer Cell Imaging

Bright and stable CuInS2/ZnS@SiO2 nanoparticles with near-infrared (NIR) emission were competently prepared by incorporating the as-prepared hydrophobic CuInS2/ZnS quantum dots (QDs) directly into lipophilic silane micelles and subsequently an exterior silica shell was formed. The obtained CuInS2/Zn...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2014-02, Vol.6 (3), p.2011-2017
Main Authors: Foda, Mohamed F, Huang, Liang, Shao, Feng, Han, He-You
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bright and stable CuInS2/ZnS@SiO2 nanoparticles with near-infrared (NIR) emission were competently prepared by incorporating the as-prepared hydrophobic CuInS2/ZnS quantum dots (QDs) directly into lipophilic silane micelles and subsequently an exterior silica shell was formed. The obtained CuInS2/ZnS@SiO2 nanoparticles homogeneously comprised both single-core and multicore remarkable CuInS2/ZnS QDs, while the silica shell thickness could be controlled to within 5–10 nm and their overall size was 17–25 nm. Also, the functionalized CuInS2/ZnS QDs encapsulated in the silica spheres, expedited their bioconjugation with holo-Transferrin (Tf) for further cancer cell imaging. The CuInS2/ZnS@SiO2 nanoparticles not only showed a dominant NIR band-edge luminescence at 650–720 nm with a quantum yield (QY) between 30 and 50%, without a recognized photoluminescence (PL) red shift, but also exhibited excellent PL and colloidal stability in aqueous media. Impressively, the cytotoxicity studies revealed minor suppression on cell viability under both CuInS2/ZnS@SiO2 and CuInS2/ZnS@SiO2@Tf concentrations up to 1 mg/mL. The application in live-cell imaging revealed that the potential of CuInS2/ZnS QDs as biocompatible, robust, cadmium-free, and brilliant NIR emitters is considered promising for fluorescent labels.
ISSN:1944-8244
1944-8252
DOI:10.1021/am4050772