Loading…
Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography
3-D refractive index (RI) distribution is an intrinsic bio-marker for the chemical and structural information about biological cells. Here we develop an optical diffraction tomography technique for the real-time reconstruction of 3-D RI distribution, employing sparse angle illumination and a graphic...
Saved in:
Published in: | Optics express 2013-12, Vol.21 (26), p.32269-32278 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | 3-D refractive index (RI) distribution is an intrinsic bio-marker for the chemical and structural information about biological cells. Here we develop an optical diffraction tomography technique for the real-time reconstruction of 3-D RI distribution, employing sparse angle illumination and a graphic processing unit (GPU) implementation. The execution time for the tomographic reconstruction is 0.21 s for 96(3) voxels, which is 17 times faster than that of a conventional approach. We demonstrated the real-time visualization capability with imaging the dynamics of Brownian motion of an anisotropic colloidal dimer and the dynamic shape change in a red blood cell upon shear flow. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/oe.21.032269 |