Loading…

Evaluation of a Wound Dressing Composed of Hyaluronic Acid and Collagen Sponge Containing Epidermal Growth Factor in Diabetic Mice

This study investigated the effect of a wound dressing composed of hyaluronic acid (HA) and collagen (Col) sponge containing epidermal growth factor (EGF) on wound healing in diabetic mice. High-molecular-weight (HMW) HA aqueous solution, hydrolyzed low-molecular-weight (LMW) HA aqueous solution and...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomaterials science. Polymer ed. 2012-01, Vol.23 (13), p.1729-1740
Main Authors: Kondo, Shinya, Niiyama, Hayato, Yu, Akane, Kuroyanagi, Yoshimitsu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigated the effect of a wound dressing composed of hyaluronic acid (HA) and collagen (Col) sponge containing epidermal growth factor (EGF) on wound healing in diabetic mice. High-molecular-weight (HMW) HA aqueous solution, hydrolyzed low-molecular-weight (LMW) HA aqueous solution and heat-denatured Col aqueous solution were mixed, followed by freeze-drying to obtain a spongy sheet. Cross-linkage between Col molecules was induced by UV irradiation to the spongy sheet (Type-I wound dressing). In a similar manner, a spongy sheet containing EGF (Type-II wound dressing) was prepared by freeze-drying the mixed solution of HMW-HA, LMW-HA and Col containing EGF. The efficacy of these products was evaluated in type-II diabetic BKS.Cg-+Lepr db /+Lepr db (db/db) mice. Wound dressings were applied to a full-thickness, dorsal skin defect measuring 1.5 cm × 2.0 cm, showing adipose tissue. In the control group, a commercially available artificial dermis composed of collagen spongy sheet (TERUDERMIS ® ) was used. A commercially available polyurethane film dressing (Bioclusive ® ) was applied over each wound dressing. After 1 week of application, wound conditions were evaluated based on their gross and histological appearances. Type-I and -II wound dressings promoted a decrease in wound size associated with angiogenesis and granulation tissue formation, compared with the artificial dermis. In particular, Type-II wound dressings promoted sufficient re-epithelialization. These findings indicate that the combination of HA, Col and EGF promotes wound healing by stimulating cell activity including cell migration and proliferation on the adipose tissue in a diabetic wound. Type-I and -II wound dressings would be useful to prepare a well-vascularized wound bed acceptable for split-thickness auto-skin grafting.
ISSN:0920-5063
1568-5624
DOI:10.1163/092050611X597799