Loading…
Simultaneous quantitative assessment of cerebral physiology using respiratory-calibrated MRI and near-infrared spectroscopy in healthy adults
Functional near-infrared spectroscopy (fNIRS) and functional MRI (fMRI) are non-invasive techniques used to relate activity in different brain regions to certain tasks. Respiratory calibration of the blood oxygen level dependent (BOLD) signal, and combined fNIRS–fMRI approaches have been used to qua...
Saved in:
Published in: | NeuroImage (Orlando, Fla.) Fla.), 2014-01, Vol.85, p.255-263 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Functional near-infrared spectroscopy (fNIRS) and functional MRI (fMRI) are non-invasive techniques used to relate activity in different brain regions to certain tasks. Respiratory calibration of the blood oxygen level dependent (BOLD) signal, and combined fNIRS–fMRI approaches have been used to quantify physiological subcomponents giving rise to the BOLD signal. A comparison of absolute oxygen metabolism parameters between MRI and NIRS, using spatially resolved (SRS) NIRS and respiratory calibrated MRI, could yield additional insight in the physiology underlying activation.
Changes in the BOLD signal, cerebral blood flow (CBF), and oxygen saturation (SO2) were derived from a single MRI sequence during a respiratory challenge in healthy volunteers. These changes were compared to SO2 obtained by a single probe SRS NIRS setup. In addition, concentration changes in oxygenated (O2Hb), deoxygenated (HHb), and total haemoglobin (tHb), obtained by NIRS, were compared to the parameters obtained by MRI.
NIRS SO2 correlated with end-tidal CO2 (0.83, p |
---|---|
ISSN: | 1053-8119 1095-9572 |
DOI: | 10.1016/j.neuroimage.2013.07.015 |