Loading…
Engineered heterologous FPP synthases-mediated Z,E-FPP synthesis in E. coli
Production of Z-type farnesyl diphosphate (FPP) has not been reported in Escherichia coli. Here we present the fusion enzyme (ILRv) of E. coli E,E-FPP synthase (IspA) and Mycobacterium tuberculosis Z,E-FPP synthase (Rv1086), which can produce primarily Z,E-FPP rather than E,E-FPP, the predominant st...
Saved in:
Published in: | Metabolic engineering 2013-07, Vol.18, p.53-59 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Production of Z-type farnesyl diphosphate (FPP) has not been reported in Escherichia coli. Here we present the fusion enzyme (ILRv) of E. coli E,E-FPP synthase (IspA) and Mycobacterium tuberculosis Z,E-FPP synthase (Rv1086), which can produce primarily Z,E-FPP rather than E,E-FPP, the predominant stereoisomer found in most organisms. Z,E-farnesol (FOH) was produced from E. coli harboring the bottom portion of the MVA pathway and the fusion FPP synthase (ILRv) at a titer of 115.6mg/L in 2YT medium containing 1% (v/v) glycerol as a carbon source and 5mM mevalonate. The Z,E-FOH production was improved by 15-fold, compared with 7.7mg/L obtained from the co-overexpression of separate IspA and Rv1086. The Z,E-FPP was not metabolized in native metabolic pathways of E. coli. It would be of interest to produce Z,E-FPP derived sesquiterpenes from recombinant E. coli due to no loss of Z,E-FPP substrate in endogenous metabolism of the host strain.
•Fusion of IspA and Rv1086 can primarily produce Z,E-FPP in E. coli.•Overproduction of Z,E-FPP leads to Z,E-FOH formation in E. coli.•Z,E-FPP is not metabolized for synthesis of essential isoprenoids in E. coli. |
---|---|
ISSN: | 1096-7176 1096-7184 |
DOI: | 10.1016/j.ymben.2013.04.002 |