Loading…

Thermal conductivity enhancement of form-stable phase-change composites by milling of expanded graphite, micro-capsules and polyethylene

Structured form-stable phase change composites were prepared by wet milling and hot-compaction of microencapsulated phase change material (MPCM), expanded graphite (EG) and high density polyethylene (HDPE). In the composites, MPCM serves as a latent heat storage material, EG as a heat transfer promo...

Full description

Saved in:
Bibliographic Details
Published in:Renewable energy 2013-12, Vol.60, p.506-509
Main Authors: Wang, Xianglei, Guo, Quangui, Wang, Junzhong, Zhong, Yajuan, Wang, Liyong, Wei, Xinghai, Liu, Lang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c430t-48147b4bf14116e55981b524d776c77fd59cdfab67508b94406dbdce2c6974083
cites cdi_FETCH-LOGICAL-c430t-48147b4bf14116e55981b524d776c77fd59cdfab67508b94406dbdce2c6974083
container_end_page 509
container_issue
container_start_page 506
container_title Renewable energy
container_volume 60
creator Wang, Xianglei
Guo, Quangui
Wang, Junzhong
Zhong, Yajuan
Wang, Liyong
Wei, Xinghai
Liu, Lang
description Structured form-stable phase change composites were prepared by wet milling and hot-compaction of microencapsulated phase change material (MPCM), expanded graphite (EG) and high density polyethylene (HDPE). In the composites, MPCM serves as a latent heat storage material, EG as a heat transfer promoting agent and HDPE as a matrix. Scanning electron microscope (SEM) characterization reveals that MPCM particles kept undamaged with a uniform dispersion in the composites. Thermal conductivity of the composites with 20 wt% EG loaded could be enhanced by 22 times compared to HDPE/MPCM composites without EG. And thermal conductivity of the composite could be increased by 10 times at a loading of 10 wt% EG. •Form-stable phase change composites were prepared by wet millingand hot-pressing method.•MPCM particles disperse uniformly in the composites and are undamaged.•EG and GP both can act as the thermal enhancers of the composites.•EG is more effective than GP as a thermal enhancer in the composites.
doi_str_mv 10.1016/j.renene.2013.05.038
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1500768061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148113002851</els_id><sourcerecordid>1500768061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-48147b4bf14116e55981b524d776c77fd59cdfab67508b94406dbdce2c6974083</originalsourceid><addsrcrecordid>eNp9kUGL1TAUhYso-Bz9B4LdCC5svWnTpN0IMqgjDLhwZh3S5PY1j7SpSd9g_4E_2_vo4HLIIov7nZNzT7LsLYOSAROfTmXEmU5ZAatLaEqo22fZgbWyK0C01fPsAJ2AgvGWvcxepXQCYE0r-SH7ezdinLTPTZjt2azuwa1bjvOoZ4MTzmsehnwIcSrSqnuP-TLqhIWh-RFJNC0huRVT3m_55Lx38_GiwD-Lni3a_Bj1MhLwkaYmhsLoJZ098TTOl-A3XMfNU_bX2YtB-4RvHu-r7P7b17vrm-L25_cf119uC8NrWAvagMue9wPjjAlsmq5lfVNxK6UwUg626YwddC9kA23fcQ7C9tZgZUQnObT1VfZh911i-H3GtKrJJYPe6xnDOSnWAEjRgmCE8h2l4ClFHNQS3aTjphioS_HqpPbi1aV4BY2i4kn2_vEFnYz2Q6QqXfqvraRgvGYX7t3ODToofYzE3P8iIwrAJNlLIj7vBFIhDw6jSsYhfYx1Ec2qbHBPR_kHNAam3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1500768061</pqid></control><display><type>article</type><title>Thermal conductivity enhancement of form-stable phase-change composites by milling of expanded graphite, micro-capsules and polyethylene</title><source>Elsevier</source><creator>Wang, Xianglei ; Guo, Quangui ; Wang, Junzhong ; Zhong, Yajuan ; Wang, Liyong ; Wei, Xinghai ; Liu, Lang</creator><creatorcontrib>Wang, Xianglei ; Guo, Quangui ; Wang, Junzhong ; Zhong, Yajuan ; Wang, Liyong ; Wei, Xinghai ; Liu, Lang</creatorcontrib><description>Structured form-stable phase change composites were prepared by wet milling and hot-compaction of microencapsulated phase change material (MPCM), expanded graphite (EG) and high density polyethylene (HDPE). In the composites, MPCM serves as a latent heat storage material, EG as a heat transfer promoting agent and HDPE as a matrix. Scanning electron microscope (SEM) characterization reveals that MPCM particles kept undamaged with a uniform dispersion in the composites. Thermal conductivity of the composites with 20 wt% EG loaded could be enhanced by 22 times compared to HDPE/MPCM composites without EG. And thermal conductivity of the composite could be increased by 10 times at a loading of 10 wt% EG. •Form-stable phase change composites were prepared by wet millingand hot-pressing method.•MPCM particles disperse uniformly in the composites and are undamaged.•EG and GP both can act as the thermal enhancers of the composites.•EG is more effective than GP as a thermal enhancer in the composites.</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2013.05.038</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Dispersions ; Energy ; Exact sciences and technology ; Expanded graphite ; graphene ; Graphite ; Heat transfer ; Microencapsulated phase change material ; microencapsulation ; Natural energy ; Phase change ; phase transition ; polyethylene ; Polyethylenes ; Polymer matrix composites ; renewable energy sources ; scanning electron microscopes ; Scanning electron microscopy ; Thermal conductivity ; Wet milling</subject><ispartof>Renewable energy, 2013-12, Vol.60, p.506-509</ispartof><rights>2013 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-48147b4bf14116e55981b524d776c77fd59cdfab67508b94406dbdce2c6974083</citedby><cites>FETCH-LOGICAL-c430t-48147b4bf14116e55981b524d776c77fd59cdfab67508b94406dbdce2c6974083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27614318$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xianglei</creatorcontrib><creatorcontrib>Guo, Quangui</creatorcontrib><creatorcontrib>Wang, Junzhong</creatorcontrib><creatorcontrib>Zhong, Yajuan</creatorcontrib><creatorcontrib>Wang, Liyong</creatorcontrib><creatorcontrib>Wei, Xinghai</creatorcontrib><creatorcontrib>Liu, Lang</creatorcontrib><title>Thermal conductivity enhancement of form-stable phase-change composites by milling of expanded graphite, micro-capsules and polyethylene</title><title>Renewable energy</title><description>Structured form-stable phase change composites were prepared by wet milling and hot-compaction of microencapsulated phase change material (MPCM), expanded graphite (EG) and high density polyethylene (HDPE). In the composites, MPCM serves as a latent heat storage material, EG as a heat transfer promoting agent and HDPE as a matrix. Scanning electron microscope (SEM) characterization reveals that MPCM particles kept undamaged with a uniform dispersion in the composites. Thermal conductivity of the composites with 20 wt% EG loaded could be enhanced by 22 times compared to HDPE/MPCM composites without EG. And thermal conductivity of the composite could be increased by 10 times at a loading of 10 wt% EG. •Form-stable phase change composites were prepared by wet millingand hot-pressing method.•MPCM particles disperse uniformly in the composites and are undamaged.•EG and GP both can act as the thermal enhancers of the composites.•EG is more effective than GP as a thermal enhancer in the composites.</description><subject>Applied sciences</subject><subject>Dispersions</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Expanded graphite</subject><subject>graphene</subject><subject>Graphite</subject><subject>Heat transfer</subject><subject>Microencapsulated phase change material</subject><subject>microencapsulation</subject><subject>Natural energy</subject><subject>Phase change</subject><subject>phase transition</subject><subject>polyethylene</subject><subject>Polyethylenes</subject><subject>Polymer matrix composites</subject><subject>renewable energy sources</subject><subject>scanning electron microscopes</subject><subject>Scanning electron microscopy</subject><subject>Thermal conductivity</subject><subject>Wet milling</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kUGL1TAUhYso-Bz9B4LdCC5svWnTpN0IMqgjDLhwZh3S5PY1j7SpSd9g_4E_2_vo4HLIIov7nZNzT7LsLYOSAROfTmXEmU5ZAatLaEqo22fZgbWyK0C01fPsAJ2AgvGWvcxepXQCYE0r-SH7ezdinLTPTZjt2azuwa1bjvOoZ4MTzmsehnwIcSrSqnuP-TLqhIWh-RFJNC0huRVT3m_55Lx38_GiwD-Lni3a_Bj1MhLwkaYmhsLoJZ098TTOl-A3XMfNU_bX2YtB-4RvHu-r7P7b17vrm-L25_cf119uC8NrWAvagMue9wPjjAlsmq5lfVNxK6UwUg626YwddC9kA23fcQ7C9tZgZUQnObT1VfZh911i-H3GtKrJJYPe6xnDOSnWAEjRgmCE8h2l4ClFHNQS3aTjphioS_HqpPbi1aV4BY2i4kn2_vEFnYz2Q6QqXfqvraRgvGYX7t3ODToofYzE3P8iIwrAJNlLIj7vBFIhDw6jSsYhfYx1Ec2qbHBPR_kHNAam3w</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Wang, Xianglei</creator><creator>Guo, Quangui</creator><creator>Wang, Junzhong</creator><creator>Zhong, Yajuan</creator><creator>Wang, Liyong</creator><creator>Wei, Xinghai</creator><creator>Liu, Lang</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7SU</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20131201</creationdate><title>Thermal conductivity enhancement of form-stable phase-change composites by milling of expanded graphite, micro-capsules and polyethylene</title><author>Wang, Xianglei ; Guo, Quangui ; Wang, Junzhong ; Zhong, Yajuan ; Wang, Liyong ; Wei, Xinghai ; Liu, Lang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-48147b4bf14116e55981b524d776c77fd59cdfab67508b94406dbdce2c6974083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Dispersions</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Expanded graphite</topic><topic>graphene</topic><topic>Graphite</topic><topic>Heat transfer</topic><topic>Microencapsulated phase change material</topic><topic>microencapsulation</topic><topic>Natural energy</topic><topic>Phase change</topic><topic>phase transition</topic><topic>polyethylene</topic><topic>Polyethylenes</topic><topic>Polymer matrix composites</topic><topic>renewable energy sources</topic><topic>scanning electron microscopes</topic><topic>Scanning electron microscopy</topic><topic>Thermal conductivity</topic><topic>Wet milling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xianglei</creatorcontrib><creatorcontrib>Guo, Quangui</creatorcontrib><creatorcontrib>Wang, Junzhong</creatorcontrib><creatorcontrib>Zhong, Yajuan</creatorcontrib><creatorcontrib>Wang, Liyong</creatorcontrib><creatorcontrib>Wei, Xinghai</creatorcontrib><creatorcontrib>Liu, Lang</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xianglei</au><au>Guo, Quangui</au><au>Wang, Junzhong</au><au>Zhong, Yajuan</au><au>Wang, Liyong</au><au>Wei, Xinghai</au><au>Liu, Lang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal conductivity enhancement of form-stable phase-change composites by milling of expanded graphite, micro-capsules and polyethylene</atitle><jtitle>Renewable energy</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>60</volume><spage>506</spage><epage>509</epage><pages>506-509</pages><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>Structured form-stable phase change composites were prepared by wet milling and hot-compaction of microencapsulated phase change material (MPCM), expanded graphite (EG) and high density polyethylene (HDPE). In the composites, MPCM serves as a latent heat storage material, EG as a heat transfer promoting agent and HDPE as a matrix. Scanning electron microscope (SEM) characterization reveals that MPCM particles kept undamaged with a uniform dispersion in the composites. Thermal conductivity of the composites with 20 wt% EG loaded could be enhanced by 22 times compared to HDPE/MPCM composites without EG. And thermal conductivity of the composite could be increased by 10 times at a loading of 10 wt% EG. •Form-stable phase change composites were prepared by wet millingand hot-pressing method.•MPCM particles disperse uniformly in the composites and are undamaged.•EG and GP both can act as the thermal enhancers of the composites.•EG is more effective than GP as a thermal enhancer in the composites.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2013.05.038</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-1481
ispartof Renewable energy, 2013-12, Vol.60, p.506-509
issn 0960-1481
1879-0682
language eng
recordid cdi_proquest_miscellaneous_1500768061
source Elsevier
subjects Applied sciences
Dispersions
Energy
Exact sciences and technology
Expanded graphite
graphene
Graphite
Heat transfer
Microencapsulated phase change material
microencapsulation
Natural energy
Phase change
phase transition
polyethylene
Polyethylenes
Polymer matrix composites
renewable energy sources
scanning electron microscopes
Scanning electron microscopy
Thermal conductivity
Wet milling
title Thermal conductivity enhancement of form-stable phase-change composites by milling of expanded graphite, micro-capsules and polyethylene
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A09%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20conductivity%20enhancement%20of%20form-stable%20phase-change%20composites%20by%20milling%20of%20expanded%20graphite,%20micro-capsules%20and%20polyethylene&rft.jtitle=Renewable%20energy&rft.au=Wang,%20Xianglei&rft.date=2013-12-01&rft.volume=60&rft.spage=506&rft.epage=509&rft.pages=506-509&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2013.05.038&rft_dat=%3Cproquest_cross%3E1500768061%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-48147b4bf14116e55981b524d776c77fd59cdfab67508b94406dbdce2c6974083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1500768061&rft_id=info:pmid/&rfr_iscdi=true