Loading…
Thermal conductivity enhancement of form-stable phase-change composites by milling of expanded graphite, micro-capsules and polyethylene
Structured form-stable phase change composites were prepared by wet milling and hot-compaction of microencapsulated phase change material (MPCM), expanded graphite (EG) and high density polyethylene (HDPE). In the composites, MPCM serves as a latent heat storage material, EG as a heat transfer promo...
Saved in:
Published in: | Renewable energy 2013-12, Vol.60, p.506-509 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c430t-48147b4bf14116e55981b524d776c77fd59cdfab67508b94406dbdce2c6974083 |
---|---|
cites | cdi_FETCH-LOGICAL-c430t-48147b4bf14116e55981b524d776c77fd59cdfab67508b94406dbdce2c6974083 |
container_end_page | 509 |
container_issue | |
container_start_page | 506 |
container_title | Renewable energy |
container_volume | 60 |
creator | Wang, Xianglei Guo, Quangui Wang, Junzhong Zhong, Yajuan Wang, Liyong Wei, Xinghai Liu, Lang |
description | Structured form-stable phase change composites were prepared by wet milling and hot-compaction of microencapsulated phase change material (MPCM), expanded graphite (EG) and high density polyethylene (HDPE). In the composites, MPCM serves as a latent heat storage material, EG as a heat transfer promoting agent and HDPE as a matrix. Scanning electron microscope (SEM) characterization reveals that MPCM particles kept undamaged with a uniform dispersion in the composites. Thermal conductivity of the composites with 20 wt% EG loaded could be enhanced by 22 times compared to HDPE/MPCM composites without EG. And thermal conductivity of the composite could be increased by 10 times at a loading of 10 wt% EG.
•Form-stable phase change composites were prepared by wet millingand hot-pressing method.•MPCM particles disperse uniformly in the composites and are undamaged.•EG and GP both can act as the thermal enhancers of the composites.•EG is more effective than GP as a thermal enhancer in the composites. |
doi_str_mv | 10.1016/j.renene.2013.05.038 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1500768061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148113002851</els_id><sourcerecordid>1500768061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-48147b4bf14116e55981b524d776c77fd59cdfab67508b94406dbdce2c6974083</originalsourceid><addsrcrecordid>eNp9kUGL1TAUhYso-Bz9B4LdCC5svWnTpN0IMqgjDLhwZh3S5PY1j7SpSd9g_4E_2_vo4HLIIov7nZNzT7LsLYOSAROfTmXEmU5ZAatLaEqo22fZgbWyK0C01fPsAJ2AgvGWvcxepXQCYE0r-SH7ezdinLTPTZjt2azuwa1bjvOoZ4MTzmsehnwIcSrSqnuP-TLqhIWh-RFJNC0huRVT3m_55Lx38_GiwD-Lni3a_Bj1MhLwkaYmhsLoJZ098TTOl-A3XMfNU_bX2YtB-4RvHu-r7P7b17vrm-L25_cf119uC8NrWAvagMue9wPjjAlsmq5lfVNxK6UwUg626YwddC9kA23fcQ7C9tZgZUQnObT1VfZh911i-H3GtKrJJYPe6xnDOSnWAEjRgmCE8h2l4ClFHNQS3aTjphioS_HqpPbi1aV4BY2i4kn2_vEFnYz2Q6QqXfqvraRgvGYX7t3ODToofYzE3P8iIwrAJNlLIj7vBFIhDw6jSsYhfYx1Ec2qbHBPR_kHNAam3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1500768061</pqid></control><display><type>article</type><title>Thermal conductivity enhancement of form-stable phase-change composites by milling of expanded graphite, micro-capsules and polyethylene</title><source>Elsevier</source><creator>Wang, Xianglei ; Guo, Quangui ; Wang, Junzhong ; Zhong, Yajuan ; Wang, Liyong ; Wei, Xinghai ; Liu, Lang</creator><creatorcontrib>Wang, Xianglei ; Guo, Quangui ; Wang, Junzhong ; Zhong, Yajuan ; Wang, Liyong ; Wei, Xinghai ; Liu, Lang</creatorcontrib><description>Structured form-stable phase change composites were prepared by wet milling and hot-compaction of microencapsulated phase change material (MPCM), expanded graphite (EG) and high density polyethylene (HDPE). In the composites, MPCM serves as a latent heat storage material, EG as a heat transfer promoting agent and HDPE as a matrix. Scanning electron microscope (SEM) characterization reveals that MPCM particles kept undamaged with a uniform dispersion in the composites. Thermal conductivity of the composites with 20 wt% EG loaded could be enhanced by 22 times compared to HDPE/MPCM composites without EG. And thermal conductivity of the composite could be increased by 10 times at a loading of 10 wt% EG.
•Form-stable phase change composites were prepared by wet millingand hot-pressing method.•MPCM particles disperse uniformly in the composites and are undamaged.•EG and GP both can act as the thermal enhancers of the composites.•EG is more effective than GP as a thermal enhancer in the composites.</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2013.05.038</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Dispersions ; Energy ; Exact sciences and technology ; Expanded graphite ; graphene ; Graphite ; Heat transfer ; Microencapsulated phase change material ; microencapsulation ; Natural energy ; Phase change ; phase transition ; polyethylene ; Polyethylenes ; Polymer matrix composites ; renewable energy sources ; scanning electron microscopes ; Scanning electron microscopy ; Thermal conductivity ; Wet milling</subject><ispartof>Renewable energy, 2013-12, Vol.60, p.506-509</ispartof><rights>2013 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-48147b4bf14116e55981b524d776c77fd59cdfab67508b94406dbdce2c6974083</citedby><cites>FETCH-LOGICAL-c430t-48147b4bf14116e55981b524d776c77fd59cdfab67508b94406dbdce2c6974083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27614318$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xianglei</creatorcontrib><creatorcontrib>Guo, Quangui</creatorcontrib><creatorcontrib>Wang, Junzhong</creatorcontrib><creatorcontrib>Zhong, Yajuan</creatorcontrib><creatorcontrib>Wang, Liyong</creatorcontrib><creatorcontrib>Wei, Xinghai</creatorcontrib><creatorcontrib>Liu, Lang</creatorcontrib><title>Thermal conductivity enhancement of form-stable phase-change composites by milling of expanded graphite, micro-capsules and polyethylene</title><title>Renewable energy</title><description>Structured form-stable phase change composites were prepared by wet milling and hot-compaction of microencapsulated phase change material (MPCM), expanded graphite (EG) and high density polyethylene (HDPE). In the composites, MPCM serves as a latent heat storage material, EG as a heat transfer promoting agent and HDPE as a matrix. Scanning electron microscope (SEM) characterization reveals that MPCM particles kept undamaged with a uniform dispersion in the composites. Thermal conductivity of the composites with 20 wt% EG loaded could be enhanced by 22 times compared to HDPE/MPCM composites without EG. And thermal conductivity of the composite could be increased by 10 times at a loading of 10 wt% EG.
•Form-stable phase change composites were prepared by wet millingand hot-pressing method.•MPCM particles disperse uniformly in the composites and are undamaged.•EG and GP both can act as the thermal enhancers of the composites.•EG is more effective than GP as a thermal enhancer in the composites.</description><subject>Applied sciences</subject><subject>Dispersions</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Expanded graphite</subject><subject>graphene</subject><subject>Graphite</subject><subject>Heat transfer</subject><subject>Microencapsulated phase change material</subject><subject>microencapsulation</subject><subject>Natural energy</subject><subject>Phase change</subject><subject>phase transition</subject><subject>polyethylene</subject><subject>Polyethylenes</subject><subject>Polymer matrix composites</subject><subject>renewable energy sources</subject><subject>scanning electron microscopes</subject><subject>Scanning electron microscopy</subject><subject>Thermal conductivity</subject><subject>Wet milling</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kUGL1TAUhYso-Bz9B4LdCC5svWnTpN0IMqgjDLhwZh3S5PY1j7SpSd9g_4E_2_vo4HLIIov7nZNzT7LsLYOSAROfTmXEmU5ZAatLaEqo22fZgbWyK0C01fPsAJ2AgvGWvcxepXQCYE0r-SH7ezdinLTPTZjt2azuwa1bjvOoZ4MTzmsehnwIcSrSqnuP-TLqhIWh-RFJNC0huRVT3m_55Lx38_GiwD-Lni3a_Bj1MhLwkaYmhsLoJZ098TTOl-A3XMfNU_bX2YtB-4RvHu-r7P7b17vrm-L25_cf119uC8NrWAvagMue9wPjjAlsmq5lfVNxK6UwUg626YwddC9kA23fcQ7C9tZgZUQnObT1VfZh911i-H3GtKrJJYPe6xnDOSnWAEjRgmCE8h2l4ClFHNQS3aTjphioS_HqpPbi1aV4BY2i4kn2_vEFnYz2Q6QqXfqvraRgvGYX7t3ODToofYzE3P8iIwrAJNlLIj7vBFIhDw6jSsYhfYx1Ec2qbHBPR_kHNAam3w</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Wang, Xianglei</creator><creator>Guo, Quangui</creator><creator>Wang, Junzhong</creator><creator>Zhong, Yajuan</creator><creator>Wang, Liyong</creator><creator>Wei, Xinghai</creator><creator>Liu, Lang</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7SU</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20131201</creationdate><title>Thermal conductivity enhancement of form-stable phase-change composites by milling of expanded graphite, micro-capsules and polyethylene</title><author>Wang, Xianglei ; Guo, Quangui ; Wang, Junzhong ; Zhong, Yajuan ; Wang, Liyong ; Wei, Xinghai ; Liu, Lang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-48147b4bf14116e55981b524d776c77fd59cdfab67508b94406dbdce2c6974083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Dispersions</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Expanded graphite</topic><topic>graphene</topic><topic>Graphite</topic><topic>Heat transfer</topic><topic>Microencapsulated phase change material</topic><topic>microencapsulation</topic><topic>Natural energy</topic><topic>Phase change</topic><topic>phase transition</topic><topic>polyethylene</topic><topic>Polyethylenes</topic><topic>Polymer matrix composites</topic><topic>renewable energy sources</topic><topic>scanning electron microscopes</topic><topic>Scanning electron microscopy</topic><topic>Thermal conductivity</topic><topic>Wet milling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xianglei</creatorcontrib><creatorcontrib>Guo, Quangui</creatorcontrib><creatorcontrib>Wang, Junzhong</creatorcontrib><creatorcontrib>Zhong, Yajuan</creatorcontrib><creatorcontrib>Wang, Liyong</creatorcontrib><creatorcontrib>Wei, Xinghai</creatorcontrib><creatorcontrib>Liu, Lang</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xianglei</au><au>Guo, Quangui</au><au>Wang, Junzhong</au><au>Zhong, Yajuan</au><au>Wang, Liyong</au><au>Wei, Xinghai</au><au>Liu, Lang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal conductivity enhancement of form-stable phase-change composites by milling of expanded graphite, micro-capsules and polyethylene</atitle><jtitle>Renewable energy</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>60</volume><spage>506</spage><epage>509</epage><pages>506-509</pages><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>Structured form-stable phase change composites were prepared by wet milling and hot-compaction of microencapsulated phase change material (MPCM), expanded graphite (EG) and high density polyethylene (HDPE). In the composites, MPCM serves as a latent heat storage material, EG as a heat transfer promoting agent and HDPE as a matrix. Scanning electron microscope (SEM) characterization reveals that MPCM particles kept undamaged with a uniform dispersion in the composites. Thermal conductivity of the composites with 20 wt% EG loaded could be enhanced by 22 times compared to HDPE/MPCM composites without EG. And thermal conductivity of the composite could be increased by 10 times at a loading of 10 wt% EG.
•Form-stable phase change composites were prepared by wet millingand hot-pressing method.•MPCM particles disperse uniformly in the composites and are undamaged.•EG and GP both can act as the thermal enhancers of the composites.•EG is more effective than GP as a thermal enhancer in the composites.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2013.05.038</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-1481 |
ispartof | Renewable energy, 2013-12, Vol.60, p.506-509 |
issn | 0960-1481 1879-0682 |
language | eng |
recordid | cdi_proquest_miscellaneous_1500768061 |
source | Elsevier |
subjects | Applied sciences Dispersions Energy Exact sciences and technology Expanded graphite graphene Graphite Heat transfer Microencapsulated phase change material microencapsulation Natural energy Phase change phase transition polyethylene Polyethylenes Polymer matrix composites renewable energy sources scanning electron microscopes Scanning electron microscopy Thermal conductivity Wet milling |
title | Thermal conductivity enhancement of form-stable phase-change composites by milling of expanded graphite, micro-capsules and polyethylene |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A09%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20conductivity%20enhancement%20of%20form-stable%20phase-change%20composites%20by%20milling%20of%20expanded%20graphite,%20micro-capsules%20and%20polyethylene&rft.jtitle=Renewable%20energy&rft.au=Wang,%20Xianglei&rft.date=2013-12-01&rft.volume=60&rft.spage=506&rft.epage=509&rft.pages=506-509&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2013.05.038&rft_dat=%3Cproquest_cross%3E1500768061%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-48147b4bf14116e55981b524d776c77fd59cdfab67508b94406dbdce2c6974083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1500768061&rft_id=info:pmid/&rfr_iscdi=true |