Loading…

Androgen Receptor Activity Is Affected by Both Nuclear Matrix Localization and the Phosphorylation Status of the Heterogeneous Nuclear Ribonucleoprotein K in Anti-Androgen-Treated LNCaP Cells: e79212

The androgen receptor (AR) plays a central role in the development and progression of prostate cancer (PCa) and anti-androgen therapy is a standard treatment. Unfortunately, after a few years, the majority of patients progress, developing androgen-independent PCa. AR-driven gene transcription recrui...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2013-11, Vol.8 (11)
Main Authors: Barboro, Paola, Borzi, Luana, Repaci, Erica, Ferrari, Nicoletta, Balbi, Cecilia
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The androgen receptor (AR) plays a central role in the development and progression of prostate cancer (PCa) and anti-androgen therapy is a standard treatment. Unfortunately, after a few years, the majority of patients progress, developing androgen-independent PCa. AR-driven gene transcription recruits a large number of co-activator/co-repressor complexes; among these, the heterogeneous nuclear ribonucleoprotein K (hnRNP K) directly interacts with and regulates the AR translational apparatus. Here we examined AR and hnRNP K expression in response to the treatment of LNCaP cells with anti-androgen cyproterone acetate (CPA) or bicalutamide (BIC). AR and hnRNP K modulation and compartmentalization were studied by Western blot and confocal microscopy. Phosphate-affinity gel electrophoresis was employed to examine how anti-androgens modified hnRNP K phosphorylation. 10-6 M CPA significantly stimulated LNCaP proliferation, whereas for 10-4 M CPA or 10-5 M BIC an antagonistic effect was observed. After anti-androgen treatment, AR expression was remarkably down-regulated within both the cytoplasm and the nucleus; however, when CPA had an agonist activity, the AR associated with the nuclear matrix (NM) increased approximately 2.5 times. This increase was synchronous with a higher PSA expression, indicating that the NM-associated AR represents the active complex. After BIC treatment, hnRNP K expression was significantly lower in the NM, the protein was hypophosphorylated and the co-localization of AR and hnRNP K decreased. In contrast, CPA as an agonist caused hnRNP K hyperphosphorylation and an increase in the co-localization of two proteins. These findings demonstrate that, in vitro, there is a strong relationship between NM-associated AR and both cell viability and PSA levels, indicating that AR transcriptional activity is critically dependent on its subnuclear localization. Moreover, the agonistic/antagonistic activity of anti-androgens is associated with modifications in hnRNP K phosphorylation, indicating an involvement of this protein in the AR transcriptional activity and likely in the onset of the androgen-independent phenotype.
ISSN:1932-6203
DOI:10.1371/journal.pone.0079212