Loading…
OLYMPUS: An automated hybrid clustering method in time series gene expression. Case study: Host response after Influenza A (H1N1) infection
Abstract The increasing flow of short time series microarray experiments for the study of dynamic cellular processes poses the need for efficient clustering tools. These tools must deal with three primary issues: first, to consider the multi-functionality of genes; second, to evaluate the similarity...
Saved in:
Published in: | Computer methods and programs in biomedicine 2013-09, Vol.111 (3), p.650-661 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c518t-b206e4f536d0bcf07687c952800daa278ea975095c9e2370631e9806ffbf5a233 |
---|---|
cites | cdi_FETCH-LOGICAL-c518t-b206e4f536d0bcf07687c952800daa278ea975095c9e2370631e9806ffbf5a233 |
container_end_page | 661 |
container_issue | 3 |
container_start_page | 650 |
container_title | Computer methods and programs in biomedicine |
container_volume | 111 |
creator | Dimitrakopoulou, Konstantina Vrahatis, Aristidis G Wilk, Esther Tsakalidis, Athanasios K Bezerianos, Anastasios |
description | Abstract The increasing flow of short time series microarray experiments for the study of dynamic cellular processes poses the need for efficient clustering tools. These tools must deal with three primary issues: first, to consider the multi-functionality of genes; second, to evaluate the similarity of the relative change of amplitude in the time domain rather than the absolute values; third, to cope with the constraints of conventional clustering algorithms such as the assignment of the appropriate cluster number. To address these, we propose OLYMPUS, a novel unsupervised clustering algorithm that integrates Differential Evolution (DE) method into Fuzzy Short Time Series (FSTS) algorithm with the scope to utilize efficiently the information of population of the first and enhance the performance of the latter. Our hybrid approach provides sets of genes that enable the deciphering of distinct phases in dynamic cellular processes. We proved the efficiency of OLYMPUS on synthetic as well as on experimental data. The discriminative power of OLYMPUS provided clusters, which refined the so far perspective of the dynamics of host response mechanisms to Influenza A (H1N1). Our kinetic model sets a timeline for several pathways and cell populations, implicated to participate in host response; yet no timeline was assigned to them ( e.g . cell cycle, homeostasis). Regarding the activity of B cells, our approach revealed that some antibody-related mechanisms remain activated until day 60 post infection. The Matlab codes for implementing OLYMPUS, as well as example datasets, are freely accessible via the Web ( http://biosignal.med.upatras.gr/wordpress/biosignal/ ). |
doi_str_mv | 10.1016/j.cmpb.2013.05.025 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1500783565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S016926071300182X</els_id><sourcerecordid>1411626433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-b206e4f536d0bcf07687c952800daa278ea975095c9e2370631e9806ffbf5a233</originalsourceid><addsrcrecordid>eNqFktGK1DAUhoso7rj6Al5IboT1ovUknaTtIsIwqLMwusK6oFchTU92M7ZpTVpxfAVf2pQZFbzQq8A53_8nOf9JkscUMgpUPN9luhvqjAHNM-AZMH4nWdCyYGnBBb-bLCJUpUxAcZI8CGEHEBEu7icnLC8qseSwSH5cbj-9fX99dU5Wjqhp7Ds1YkNu97W3DdHtFEb01t2QDsfbviHWkdF2SEKsYiA36JDgt8FjCLZ3GVmrEJvj1OzPyaYPI4mdoXexqEx0IhfOtBO674qsyNmGvqPPoqVBPUb1w-SeUW3AR8fzNLl-_erDepNuL99crFfbVHNajmnNQODS8Fw0UGsDhSgLXXFWAjRKsaJEVRUcKq4rjB8FkVOsShDG1IYrluenydnBd_D9lwnDKDsbNLatcthPQVIOUJR5nOH_0SWlgollPruyA6p9H4JHIwdvO-X3koKc85I7Oecl57wkcBnDiKInR_-p7rD5LfkVUASeHgEVtGqNV07b8IcrBPCKssi9OHAYB_fVopdBW3QaG-vjdGXT23-_4-Vfct1aZ-ONn3GPYddP3sVIJJWBSZBX82bNi0VzAFqyj_lPjTLHQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1411626433</pqid></control><display><type>article</type><title>OLYMPUS: An automated hybrid clustering method in time series gene expression. Case study: Host response after Influenza A (H1N1) infection</title><source>Elsevier</source><creator>Dimitrakopoulou, Konstantina ; Vrahatis, Aristidis G ; Wilk, Esther ; Tsakalidis, Athanasios K ; Bezerianos, Anastasios</creator><creatorcontrib>Dimitrakopoulou, Konstantina ; Vrahatis, Aristidis G ; Wilk, Esther ; Tsakalidis, Athanasios K ; Bezerianos, Anastasios</creatorcontrib><description>Abstract The increasing flow of short time series microarray experiments for the study of dynamic cellular processes poses the need for efficient clustering tools. These tools must deal with three primary issues: first, to consider the multi-functionality of genes; second, to evaluate the similarity of the relative change of amplitude in the time domain rather than the absolute values; third, to cope with the constraints of conventional clustering algorithms such as the assignment of the appropriate cluster number. To address these, we propose OLYMPUS, a novel unsupervised clustering algorithm that integrates Differential Evolution (DE) method into Fuzzy Short Time Series (FSTS) algorithm with the scope to utilize efficiently the information of population of the first and enhance the performance of the latter. Our hybrid approach provides sets of genes that enable the deciphering of distinct phases in dynamic cellular processes. We proved the efficiency of OLYMPUS on synthetic as well as on experimental data. The discriminative power of OLYMPUS provided clusters, which refined the so far perspective of the dynamics of host response mechanisms to Influenza A (H1N1). Our kinetic model sets a timeline for several pathways and cell populations, implicated to participate in host response; yet no timeline was assigned to them ( e.g . cell cycle, homeostasis). Regarding the activity of B cells, our approach revealed that some antibody-related mechanisms remain activated until day 60 post infection. The Matlab codes for implementing OLYMPUS, as well as example datasets, are freely accessible via the Web ( http://biosignal.med.upatras.gr/wordpress/biosignal/ ).</description><identifier>ISSN: 0169-2607</identifier><identifier>EISSN: 1872-7565</identifier><identifier>DOI: 10.1016/j.cmpb.2013.05.025</identifier><identifier>PMID: 23796450</identifier><language>eng</language><publisher>Kidlington: Elsevier Ireland Ltd</publisher><subject>Algorithms ; Applied sciences ; Artificial intelligence ; Automation ; Biological and medical sciences ; Cell Cycle ; Cellular ; Clustering ; Computer science; control theory; systems ; Data processing. List processing. Character string processing ; Dynamic biological process ; Dynamics ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Fuzzy ; Fuzzy Logic ; Gene expression ; Gene expression data ; Gene Expression Regulation, Viral ; Genes ; Homeostasis ; Host-Pathogen Interactions ; Humans ; Immunity, Innate ; Inference from stochastic processes; time series analysis ; Influenza A kinetic model ; Influenza A Virus, H1N1 Subtype - isolation & purification ; Influenza, Human - immunology ; Influenza, Human - virology ; Internal Medicine ; Mathematics ; Memory organisation. Data processing ; Molecular and cellular biology ; Molecular genetics ; Other ; Probability and statistics ; Sciences and techniques of general use ; Short time series ; Software ; Statistics ; Time series</subject><ispartof>Computer methods and programs in biomedicine, 2013-09, Vol.111 (3), p.650-661</ispartof><rights>Elsevier Ireland Ltd</rights><rights>2013 Elsevier Ireland Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-b206e4f536d0bcf07687c952800daa278ea975095c9e2370631e9806ffbf5a233</citedby><cites>FETCH-LOGICAL-c518t-b206e4f536d0bcf07687c952800daa278ea975095c9e2370631e9806ffbf5a233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27605912$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23796450$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dimitrakopoulou, Konstantina</creatorcontrib><creatorcontrib>Vrahatis, Aristidis G</creatorcontrib><creatorcontrib>Wilk, Esther</creatorcontrib><creatorcontrib>Tsakalidis, Athanasios K</creatorcontrib><creatorcontrib>Bezerianos, Anastasios</creatorcontrib><title>OLYMPUS: An automated hybrid clustering method in time series gene expression. Case study: Host response after Influenza A (H1N1) infection</title><title>Computer methods and programs in biomedicine</title><addtitle>Comput Methods Programs Biomed</addtitle><description>Abstract The increasing flow of short time series microarray experiments for the study of dynamic cellular processes poses the need for efficient clustering tools. These tools must deal with three primary issues: first, to consider the multi-functionality of genes; second, to evaluate the similarity of the relative change of amplitude in the time domain rather than the absolute values; third, to cope with the constraints of conventional clustering algorithms such as the assignment of the appropriate cluster number. To address these, we propose OLYMPUS, a novel unsupervised clustering algorithm that integrates Differential Evolution (DE) method into Fuzzy Short Time Series (FSTS) algorithm with the scope to utilize efficiently the information of population of the first and enhance the performance of the latter. Our hybrid approach provides sets of genes that enable the deciphering of distinct phases in dynamic cellular processes. We proved the efficiency of OLYMPUS on synthetic as well as on experimental data. The discriminative power of OLYMPUS provided clusters, which refined the so far perspective of the dynamics of host response mechanisms to Influenza A (H1N1). Our kinetic model sets a timeline for several pathways and cell populations, implicated to participate in host response; yet no timeline was assigned to them ( e.g . cell cycle, homeostasis). Regarding the activity of B cells, our approach revealed that some antibody-related mechanisms remain activated until day 60 post infection. The Matlab codes for implementing OLYMPUS, as well as example datasets, are freely accessible via the Web ( http://biosignal.med.upatras.gr/wordpress/biosignal/ ).</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Biological and medical sciences</subject><subject>Cell Cycle</subject><subject>Cellular</subject><subject>Clustering</subject><subject>Computer science; control theory; systems</subject><subject>Data processing. List processing. Character string processing</subject><subject>Dynamic biological process</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fuzzy</subject><subject>Fuzzy Logic</subject><subject>Gene expression</subject><subject>Gene expression data</subject><subject>Gene Expression Regulation, Viral</subject><subject>Genes</subject><subject>Homeostasis</subject><subject>Host-Pathogen Interactions</subject><subject>Humans</subject><subject>Immunity, Innate</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Influenza A kinetic model</subject><subject>Influenza A Virus, H1N1 Subtype - isolation & purification</subject><subject>Influenza, Human - immunology</subject><subject>Influenza, Human - virology</subject><subject>Internal Medicine</subject><subject>Mathematics</subject><subject>Memory organisation. Data processing</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Other</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Short time series</subject><subject>Software</subject><subject>Statistics</subject><subject>Time series</subject><issn>0169-2607</issn><issn>1872-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFktGK1DAUhoso7rj6Al5IboT1ovUknaTtIsIwqLMwusK6oFchTU92M7ZpTVpxfAVf2pQZFbzQq8A53_8nOf9JkscUMgpUPN9luhvqjAHNM-AZMH4nWdCyYGnBBb-bLCJUpUxAcZI8CGEHEBEu7icnLC8qseSwSH5cbj-9fX99dU5Wjqhp7Ds1YkNu97W3DdHtFEb01t2QDsfbviHWkdF2SEKsYiA36JDgt8FjCLZ3GVmrEJvj1OzPyaYPI4mdoXexqEx0IhfOtBO674qsyNmGvqPPoqVBPUb1w-SeUW3AR8fzNLl-_erDepNuL99crFfbVHNajmnNQODS8Fw0UGsDhSgLXXFWAjRKsaJEVRUcKq4rjB8FkVOsShDG1IYrluenydnBd_D9lwnDKDsbNLatcthPQVIOUJR5nOH_0SWlgollPruyA6p9H4JHIwdvO-X3koKc85I7Oecl57wkcBnDiKInR_-p7rD5LfkVUASeHgEVtGqNV07b8IcrBPCKssi9OHAYB_fVopdBW3QaG-vjdGXT23-_4-Vfct1aZ-ONn3GPYddP3sVIJJWBSZBX82bNi0VzAFqyj_lPjTLHQw</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Dimitrakopoulou, Konstantina</creator><creator>Vrahatis, Aristidis G</creator><creator>Wilk, Esther</creator><creator>Tsakalidis, Athanasios K</creator><creator>Bezerianos, Anastasios</creator><general>Elsevier Ireland Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130901</creationdate><title>OLYMPUS: An automated hybrid clustering method in time series gene expression. Case study: Host response after Influenza A (H1N1) infection</title><author>Dimitrakopoulou, Konstantina ; Vrahatis, Aristidis G ; Wilk, Esther ; Tsakalidis, Athanasios K ; Bezerianos, Anastasios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-b206e4f536d0bcf07687c952800daa278ea975095c9e2370631e9806ffbf5a233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Biological and medical sciences</topic><topic>Cell Cycle</topic><topic>Cellular</topic><topic>Clustering</topic><topic>Computer science; control theory; systems</topic><topic>Data processing. List processing. Character string processing</topic><topic>Dynamic biological process</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fuzzy</topic><topic>Fuzzy Logic</topic><topic>Gene expression</topic><topic>Gene expression data</topic><topic>Gene Expression Regulation, Viral</topic><topic>Genes</topic><topic>Homeostasis</topic><topic>Host-Pathogen Interactions</topic><topic>Humans</topic><topic>Immunity, Innate</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Influenza A kinetic model</topic><topic>Influenza A Virus, H1N1 Subtype - isolation & purification</topic><topic>Influenza, Human - immunology</topic><topic>Influenza, Human - virology</topic><topic>Internal Medicine</topic><topic>Mathematics</topic><topic>Memory organisation. Data processing</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Other</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Short time series</topic><topic>Software</topic><topic>Statistics</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dimitrakopoulou, Konstantina</creatorcontrib><creatorcontrib>Vrahatis, Aristidis G</creatorcontrib><creatorcontrib>Wilk, Esther</creatorcontrib><creatorcontrib>Tsakalidis, Athanasios K</creatorcontrib><creatorcontrib>Bezerianos, Anastasios</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods and programs in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dimitrakopoulou, Konstantina</au><au>Vrahatis, Aristidis G</au><au>Wilk, Esther</au><au>Tsakalidis, Athanasios K</au><au>Bezerianos, Anastasios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OLYMPUS: An automated hybrid clustering method in time series gene expression. Case study: Host response after Influenza A (H1N1) infection</atitle><jtitle>Computer methods and programs in biomedicine</jtitle><addtitle>Comput Methods Programs Biomed</addtitle><date>2013-09-01</date><risdate>2013</risdate><volume>111</volume><issue>3</issue><spage>650</spage><epage>661</epage><pages>650-661</pages><issn>0169-2607</issn><eissn>1872-7565</eissn><abstract>Abstract The increasing flow of short time series microarray experiments for the study of dynamic cellular processes poses the need for efficient clustering tools. These tools must deal with three primary issues: first, to consider the multi-functionality of genes; second, to evaluate the similarity of the relative change of amplitude in the time domain rather than the absolute values; third, to cope with the constraints of conventional clustering algorithms such as the assignment of the appropriate cluster number. To address these, we propose OLYMPUS, a novel unsupervised clustering algorithm that integrates Differential Evolution (DE) method into Fuzzy Short Time Series (FSTS) algorithm with the scope to utilize efficiently the information of population of the first and enhance the performance of the latter. Our hybrid approach provides sets of genes that enable the deciphering of distinct phases in dynamic cellular processes. We proved the efficiency of OLYMPUS on synthetic as well as on experimental data. The discriminative power of OLYMPUS provided clusters, which refined the so far perspective of the dynamics of host response mechanisms to Influenza A (H1N1). Our kinetic model sets a timeline for several pathways and cell populations, implicated to participate in host response; yet no timeline was assigned to them ( e.g . cell cycle, homeostasis). Regarding the activity of B cells, our approach revealed that some antibody-related mechanisms remain activated until day 60 post infection. The Matlab codes for implementing OLYMPUS, as well as example datasets, are freely accessible via the Web ( http://biosignal.med.upatras.gr/wordpress/biosignal/ ).</abstract><cop>Kidlington</cop><pub>Elsevier Ireland Ltd</pub><pmid>23796450</pmid><doi>10.1016/j.cmpb.2013.05.025</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-2607 |
ispartof | Computer methods and programs in biomedicine, 2013-09, Vol.111 (3), p.650-661 |
issn | 0169-2607 1872-7565 |
language | eng |
recordid | cdi_proquest_miscellaneous_1500783565 |
source | Elsevier |
subjects | Algorithms Applied sciences Artificial intelligence Automation Biological and medical sciences Cell Cycle Cellular Clustering Computer science control theory systems Data processing. List processing. Character string processing Dynamic biological process Dynamics Exact sciences and technology Fundamental and applied biological sciences. Psychology Fuzzy Fuzzy Logic Gene expression Gene expression data Gene Expression Regulation, Viral Genes Homeostasis Host-Pathogen Interactions Humans Immunity, Innate Inference from stochastic processes time series analysis Influenza A kinetic model Influenza A Virus, H1N1 Subtype - isolation & purification Influenza, Human - immunology Influenza, Human - virology Internal Medicine Mathematics Memory organisation. Data processing Molecular and cellular biology Molecular genetics Other Probability and statistics Sciences and techniques of general use Short time series Software Statistics Time series |
title | OLYMPUS: An automated hybrid clustering method in time series gene expression. Case study: Host response after Influenza A (H1N1) infection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A30%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OLYMPUS:%20An%20automated%20hybrid%20clustering%20method%20in%20time%20series%20gene%20expression.%20Case%20study:%20Host%20response%20after%20Influenza%20A%20(H1N1)%20infection&rft.jtitle=Computer%20methods%20and%20programs%20in%20biomedicine&rft.au=Dimitrakopoulou,%20Konstantina&rft.date=2013-09-01&rft.volume=111&rft.issue=3&rft.spage=650&rft.epage=661&rft.pages=650-661&rft.issn=0169-2607&rft.eissn=1872-7565&rft_id=info:doi/10.1016/j.cmpb.2013.05.025&rft_dat=%3Cproquest_cross%3E1411626433%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-b206e4f536d0bcf07687c952800daa278ea975095c9e2370631e9806ffbf5a233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1411626433&rft_id=info:pmid/23796450&rfr_iscdi=true |