Loading…

OLYMPUS: An automated hybrid clustering method in time series gene expression. Case study: Host response after Influenza A (H1N1) infection

Abstract The increasing flow of short time series microarray experiments for the study of dynamic cellular processes poses the need for efficient clustering tools. These tools must deal with three primary issues: first, to consider the multi-functionality of genes; second, to evaluate the similarity...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods and programs in biomedicine 2013-09, Vol.111 (3), p.650-661
Main Authors: Dimitrakopoulou, Konstantina, Vrahatis, Aristidis G, Wilk, Esther, Tsakalidis, Athanasios K, Bezerianos, Anastasios
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c518t-b206e4f536d0bcf07687c952800daa278ea975095c9e2370631e9806ffbf5a233
cites cdi_FETCH-LOGICAL-c518t-b206e4f536d0bcf07687c952800daa278ea975095c9e2370631e9806ffbf5a233
container_end_page 661
container_issue 3
container_start_page 650
container_title Computer methods and programs in biomedicine
container_volume 111
creator Dimitrakopoulou, Konstantina
Vrahatis, Aristidis G
Wilk, Esther
Tsakalidis, Athanasios K
Bezerianos, Anastasios
description Abstract The increasing flow of short time series microarray experiments for the study of dynamic cellular processes poses the need for efficient clustering tools. These tools must deal with three primary issues: first, to consider the multi-functionality of genes; second, to evaluate the similarity of the relative change of amplitude in the time domain rather than the absolute values; third, to cope with the constraints of conventional clustering algorithms such as the assignment of the appropriate cluster number. To address these, we propose OLYMPUS, a novel unsupervised clustering algorithm that integrates Differential Evolution (DE) method into Fuzzy Short Time Series (FSTS) algorithm with the scope to utilize efficiently the information of population of the first and enhance the performance of the latter. Our hybrid approach provides sets of genes that enable the deciphering of distinct phases in dynamic cellular processes. We proved the efficiency of OLYMPUS on synthetic as well as on experimental data. The discriminative power of OLYMPUS provided clusters, which refined the so far perspective of the dynamics of host response mechanisms to Influenza A (H1N1). Our kinetic model sets a timeline for several pathways and cell populations, implicated to participate in host response; yet no timeline was assigned to them ( e.g . cell cycle, homeostasis). Regarding the activity of B cells, our approach revealed that some antibody-related mechanisms remain activated until day 60 post infection. The Matlab codes for implementing OLYMPUS, as well as example datasets, are freely accessible via the Web ( http://biosignal.med.upatras.gr/wordpress/biosignal/ ).
doi_str_mv 10.1016/j.cmpb.2013.05.025
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1500783565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S016926071300182X</els_id><sourcerecordid>1411626433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-b206e4f536d0bcf07687c952800daa278ea975095c9e2370631e9806ffbf5a233</originalsourceid><addsrcrecordid>eNqFktGK1DAUhoso7rj6Al5IboT1ovUknaTtIsIwqLMwusK6oFchTU92M7ZpTVpxfAVf2pQZFbzQq8A53_8nOf9JkscUMgpUPN9luhvqjAHNM-AZMH4nWdCyYGnBBb-bLCJUpUxAcZI8CGEHEBEu7icnLC8qseSwSH5cbj-9fX99dU5Wjqhp7Ds1YkNu97W3DdHtFEb01t2QDsfbviHWkdF2SEKsYiA36JDgt8FjCLZ3GVmrEJvj1OzPyaYPI4mdoXexqEx0IhfOtBO674qsyNmGvqPPoqVBPUb1w-SeUW3AR8fzNLl-_erDepNuL99crFfbVHNajmnNQODS8Fw0UGsDhSgLXXFWAjRKsaJEVRUcKq4rjB8FkVOsShDG1IYrluenydnBd_D9lwnDKDsbNLatcthPQVIOUJR5nOH_0SWlgollPruyA6p9H4JHIwdvO-X3koKc85I7Oecl57wkcBnDiKInR_-p7rD5LfkVUASeHgEVtGqNV07b8IcrBPCKssi9OHAYB_fVopdBW3QaG-vjdGXT23-_4-Vfct1aZ-ONn3GPYddP3sVIJJWBSZBX82bNi0VzAFqyj_lPjTLHQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1411626433</pqid></control><display><type>article</type><title>OLYMPUS: An automated hybrid clustering method in time series gene expression. Case study: Host response after Influenza A (H1N1) infection</title><source>Elsevier</source><creator>Dimitrakopoulou, Konstantina ; Vrahatis, Aristidis G ; Wilk, Esther ; Tsakalidis, Athanasios K ; Bezerianos, Anastasios</creator><creatorcontrib>Dimitrakopoulou, Konstantina ; Vrahatis, Aristidis G ; Wilk, Esther ; Tsakalidis, Athanasios K ; Bezerianos, Anastasios</creatorcontrib><description>Abstract The increasing flow of short time series microarray experiments for the study of dynamic cellular processes poses the need for efficient clustering tools. These tools must deal with three primary issues: first, to consider the multi-functionality of genes; second, to evaluate the similarity of the relative change of amplitude in the time domain rather than the absolute values; third, to cope with the constraints of conventional clustering algorithms such as the assignment of the appropriate cluster number. To address these, we propose OLYMPUS, a novel unsupervised clustering algorithm that integrates Differential Evolution (DE) method into Fuzzy Short Time Series (FSTS) algorithm with the scope to utilize efficiently the information of population of the first and enhance the performance of the latter. Our hybrid approach provides sets of genes that enable the deciphering of distinct phases in dynamic cellular processes. We proved the efficiency of OLYMPUS on synthetic as well as on experimental data. The discriminative power of OLYMPUS provided clusters, which refined the so far perspective of the dynamics of host response mechanisms to Influenza A (H1N1). Our kinetic model sets a timeline for several pathways and cell populations, implicated to participate in host response; yet no timeline was assigned to them ( e.g . cell cycle, homeostasis). Regarding the activity of B cells, our approach revealed that some antibody-related mechanisms remain activated until day 60 post infection. The Matlab codes for implementing OLYMPUS, as well as example datasets, are freely accessible via the Web ( http://biosignal.med.upatras.gr/wordpress/biosignal/ ).</description><identifier>ISSN: 0169-2607</identifier><identifier>EISSN: 1872-7565</identifier><identifier>DOI: 10.1016/j.cmpb.2013.05.025</identifier><identifier>PMID: 23796450</identifier><language>eng</language><publisher>Kidlington: Elsevier Ireland Ltd</publisher><subject>Algorithms ; Applied sciences ; Artificial intelligence ; Automation ; Biological and medical sciences ; Cell Cycle ; Cellular ; Clustering ; Computer science; control theory; systems ; Data processing. List processing. Character string processing ; Dynamic biological process ; Dynamics ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Fuzzy ; Fuzzy Logic ; Gene expression ; Gene expression data ; Gene Expression Regulation, Viral ; Genes ; Homeostasis ; Host-Pathogen Interactions ; Humans ; Immunity, Innate ; Inference from stochastic processes; time series analysis ; Influenza A kinetic model ; Influenza A Virus, H1N1 Subtype - isolation &amp; purification ; Influenza, Human - immunology ; Influenza, Human - virology ; Internal Medicine ; Mathematics ; Memory organisation. Data processing ; Molecular and cellular biology ; Molecular genetics ; Other ; Probability and statistics ; Sciences and techniques of general use ; Short time series ; Software ; Statistics ; Time series</subject><ispartof>Computer methods and programs in biomedicine, 2013-09, Vol.111 (3), p.650-661</ispartof><rights>Elsevier Ireland Ltd</rights><rights>2013 Elsevier Ireland Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-b206e4f536d0bcf07687c952800daa278ea975095c9e2370631e9806ffbf5a233</citedby><cites>FETCH-LOGICAL-c518t-b206e4f536d0bcf07687c952800daa278ea975095c9e2370631e9806ffbf5a233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27605912$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23796450$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dimitrakopoulou, Konstantina</creatorcontrib><creatorcontrib>Vrahatis, Aristidis G</creatorcontrib><creatorcontrib>Wilk, Esther</creatorcontrib><creatorcontrib>Tsakalidis, Athanasios K</creatorcontrib><creatorcontrib>Bezerianos, Anastasios</creatorcontrib><title>OLYMPUS: An automated hybrid clustering method in time series gene expression. Case study: Host response after Influenza A (H1N1) infection</title><title>Computer methods and programs in biomedicine</title><addtitle>Comput Methods Programs Biomed</addtitle><description>Abstract The increasing flow of short time series microarray experiments for the study of dynamic cellular processes poses the need for efficient clustering tools. These tools must deal with three primary issues: first, to consider the multi-functionality of genes; second, to evaluate the similarity of the relative change of amplitude in the time domain rather than the absolute values; third, to cope with the constraints of conventional clustering algorithms such as the assignment of the appropriate cluster number. To address these, we propose OLYMPUS, a novel unsupervised clustering algorithm that integrates Differential Evolution (DE) method into Fuzzy Short Time Series (FSTS) algorithm with the scope to utilize efficiently the information of population of the first and enhance the performance of the latter. Our hybrid approach provides sets of genes that enable the deciphering of distinct phases in dynamic cellular processes. We proved the efficiency of OLYMPUS on synthetic as well as on experimental data. The discriminative power of OLYMPUS provided clusters, which refined the so far perspective of the dynamics of host response mechanisms to Influenza A (H1N1). Our kinetic model sets a timeline for several pathways and cell populations, implicated to participate in host response; yet no timeline was assigned to them ( e.g . cell cycle, homeostasis). Regarding the activity of B cells, our approach revealed that some antibody-related mechanisms remain activated until day 60 post infection. The Matlab codes for implementing OLYMPUS, as well as example datasets, are freely accessible via the Web ( http://biosignal.med.upatras.gr/wordpress/biosignal/ ).</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Biological and medical sciences</subject><subject>Cell Cycle</subject><subject>Cellular</subject><subject>Clustering</subject><subject>Computer science; control theory; systems</subject><subject>Data processing. List processing. Character string processing</subject><subject>Dynamic biological process</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fuzzy</subject><subject>Fuzzy Logic</subject><subject>Gene expression</subject><subject>Gene expression data</subject><subject>Gene Expression Regulation, Viral</subject><subject>Genes</subject><subject>Homeostasis</subject><subject>Host-Pathogen Interactions</subject><subject>Humans</subject><subject>Immunity, Innate</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Influenza A kinetic model</subject><subject>Influenza A Virus, H1N1 Subtype - isolation &amp; purification</subject><subject>Influenza, Human - immunology</subject><subject>Influenza, Human - virology</subject><subject>Internal Medicine</subject><subject>Mathematics</subject><subject>Memory organisation. Data processing</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Other</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Short time series</subject><subject>Software</subject><subject>Statistics</subject><subject>Time series</subject><issn>0169-2607</issn><issn>1872-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFktGK1DAUhoso7rj6Al5IboT1ovUknaTtIsIwqLMwusK6oFchTU92M7ZpTVpxfAVf2pQZFbzQq8A53_8nOf9JkscUMgpUPN9luhvqjAHNM-AZMH4nWdCyYGnBBb-bLCJUpUxAcZI8CGEHEBEu7icnLC8qseSwSH5cbj-9fX99dU5Wjqhp7Ds1YkNu97W3DdHtFEb01t2QDsfbviHWkdF2SEKsYiA36JDgt8FjCLZ3GVmrEJvj1OzPyaYPI4mdoXexqEx0IhfOtBO674qsyNmGvqPPoqVBPUb1w-SeUW3AR8fzNLl-_erDepNuL99crFfbVHNajmnNQODS8Fw0UGsDhSgLXXFWAjRKsaJEVRUcKq4rjB8FkVOsShDG1IYrluenydnBd_D9lwnDKDsbNLatcthPQVIOUJR5nOH_0SWlgollPruyA6p9H4JHIwdvO-X3koKc85I7Oecl57wkcBnDiKInR_-p7rD5LfkVUASeHgEVtGqNV07b8IcrBPCKssi9OHAYB_fVopdBW3QaG-vjdGXT23-_4-Vfct1aZ-ONn3GPYddP3sVIJJWBSZBX82bNi0VzAFqyj_lPjTLHQw</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Dimitrakopoulou, Konstantina</creator><creator>Vrahatis, Aristidis G</creator><creator>Wilk, Esther</creator><creator>Tsakalidis, Athanasios K</creator><creator>Bezerianos, Anastasios</creator><general>Elsevier Ireland Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130901</creationdate><title>OLYMPUS: An automated hybrid clustering method in time series gene expression. Case study: Host response after Influenza A (H1N1) infection</title><author>Dimitrakopoulou, Konstantina ; Vrahatis, Aristidis G ; Wilk, Esther ; Tsakalidis, Athanasios K ; Bezerianos, Anastasios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-b206e4f536d0bcf07687c952800daa278ea975095c9e2370631e9806ffbf5a233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Biological and medical sciences</topic><topic>Cell Cycle</topic><topic>Cellular</topic><topic>Clustering</topic><topic>Computer science; control theory; systems</topic><topic>Data processing. List processing. Character string processing</topic><topic>Dynamic biological process</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fuzzy</topic><topic>Fuzzy Logic</topic><topic>Gene expression</topic><topic>Gene expression data</topic><topic>Gene Expression Regulation, Viral</topic><topic>Genes</topic><topic>Homeostasis</topic><topic>Host-Pathogen Interactions</topic><topic>Humans</topic><topic>Immunity, Innate</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Influenza A kinetic model</topic><topic>Influenza A Virus, H1N1 Subtype - isolation &amp; purification</topic><topic>Influenza, Human - immunology</topic><topic>Influenza, Human - virology</topic><topic>Internal Medicine</topic><topic>Mathematics</topic><topic>Memory organisation. Data processing</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Other</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Short time series</topic><topic>Software</topic><topic>Statistics</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dimitrakopoulou, Konstantina</creatorcontrib><creatorcontrib>Vrahatis, Aristidis G</creatorcontrib><creatorcontrib>Wilk, Esther</creatorcontrib><creatorcontrib>Tsakalidis, Athanasios K</creatorcontrib><creatorcontrib>Bezerianos, Anastasios</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods and programs in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dimitrakopoulou, Konstantina</au><au>Vrahatis, Aristidis G</au><au>Wilk, Esther</au><au>Tsakalidis, Athanasios K</au><au>Bezerianos, Anastasios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OLYMPUS: An automated hybrid clustering method in time series gene expression. Case study: Host response after Influenza A (H1N1) infection</atitle><jtitle>Computer methods and programs in biomedicine</jtitle><addtitle>Comput Methods Programs Biomed</addtitle><date>2013-09-01</date><risdate>2013</risdate><volume>111</volume><issue>3</issue><spage>650</spage><epage>661</epage><pages>650-661</pages><issn>0169-2607</issn><eissn>1872-7565</eissn><abstract>Abstract The increasing flow of short time series microarray experiments for the study of dynamic cellular processes poses the need for efficient clustering tools. These tools must deal with three primary issues: first, to consider the multi-functionality of genes; second, to evaluate the similarity of the relative change of amplitude in the time domain rather than the absolute values; third, to cope with the constraints of conventional clustering algorithms such as the assignment of the appropriate cluster number. To address these, we propose OLYMPUS, a novel unsupervised clustering algorithm that integrates Differential Evolution (DE) method into Fuzzy Short Time Series (FSTS) algorithm with the scope to utilize efficiently the information of population of the first and enhance the performance of the latter. Our hybrid approach provides sets of genes that enable the deciphering of distinct phases in dynamic cellular processes. We proved the efficiency of OLYMPUS on synthetic as well as on experimental data. The discriminative power of OLYMPUS provided clusters, which refined the so far perspective of the dynamics of host response mechanisms to Influenza A (H1N1). Our kinetic model sets a timeline for several pathways and cell populations, implicated to participate in host response; yet no timeline was assigned to them ( e.g . cell cycle, homeostasis). Regarding the activity of B cells, our approach revealed that some antibody-related mechanisms remain activated until day 60 post infection. The Matlab codes for implementing OLYMPUS, as well as example datasets, are freely accessible via the Web ( http://biosignal.med.upatras.gr/wordpress/biosignal/ ).</abstract><cop>Kidlington</cop><pub>Elsevier Ireland Ltd</pub><pmid>23796450</pmid><doi>10.1016/j.cmpb.2013.05.025</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0169-2607
ispartof Computer methods and programs in biomedicine, 2013-09, Vol.111 (3), p.650-661
issn 0169-2607
1872-7565
language eng
recordid cdi_proquest_miscellaneous_1500783565
source Elsevier
subjects Algorithms
Applied sciences
Artificial intelligence
Automation
Biological and medical sciences
Cell Cycle
Cellular
Clustering
Computer science
control theory
systems
Data processing. List processing. Character string processing
Dynamic biological process
Dynamics
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
Fuzzy
Fuzzy Logic
Gene expression
Gene expression data
Gene Expression Regulation, Viral
Genes
Homeostasis
Host-Pathogen Interactions
Humans
Immunity, Innate
Inference from stochastic processes
time series analysis
Influenza A kinetic model
Influenza A Virus, H1N1 Subtype - isolation & purification
Influenza, Human - immunology
Influenza, Human - virology
Internal Medicine
Mathematics
Memory organisation. Data processing
Molecular and cellular biology
Molecular genetics
Other
Probability and statistics
Sciences and techniques of general use
Short time series
Software
Statistics
Time series
title OLYMPUS: An automated hybrid clustering method in time series gene expression. Case study: Host response after Influenza A (H1N1) infection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A30%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OLYMPUS:%20An%20automated%20hybrid%20clustering%20method%20in%20time%20series%20gene%20expression.%20Case%20study:%20Host%20response%20after%20Influenza%20A%20(H1N1)%20infection&rft.jtitle=Computer%20methods%20and%20programs%20in%20biomedicine&rft.au=Dimitrakopoulou,%20Konstantina&rft.date=2013-09-01&rft.volume=111&rft.issue=3&rft.spage=650&rft.epage=661&rft.pages=650-661&rft.issn=0169-2607&rft.eissn=1872-7565&rft_id=info:doi/10.1016/j.cmpb.2013.05.025&rft_dat=%3Cproquest_cross%3E1411626433%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-b206e4f536d0bcf07687c952800daa278ea975095c9e2370631e9806ffbf5a233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1411626433&rft_id=info:pmid/23796450&rfr_iscdi=true