Loading…
3-Aryl-4-acyloxyethoxyfuran-2(5H)-ones as inhibitors of tyrosyl-tRNA synthetase: Synthesis, molecular docking and antibacterial evaluation
Thirty-eight 3-aryl-4-acyloxyethoxyfuran-2(5H)-ones were designed, prepared and tested for antibacterial activities. 4-(2-(3-Chlorophenylformyloxy)ethoxy)-3-(4-chlorophenyl)furan-2(5H)-one (d40) showed the widest spectrum of activity with MIC50 of 2.0μg/mL against Staphylococcus aureus, 4.3μg/mL aga...
Saved in:
Published in: | Bioorganic & medicinal chemistry 2013-09, Vol.21 (17), p.4914-4922 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Thirty-eight 3-aryl-4-acyloxyethoxyfuran-2(5H)-ones were designed, prepared and tested for antibacterial activities. 4-(2-(3-Chlorophenylformyloxy)ethoxy)-3-(4-chlorophenyl)furan-2(5H)-one (d40) showed the widest spectrum of activity with MIC50 of 2.0μg/mL against Staphylococcus aureus, 4.3μg/mL against Escherichia coli, 1.5μg/mL against Pseudomonas aeruginosa and 1.2μg/mL against Candida albicans.
Thirty-eight 3-aryl-4-acyloxyethoxyfuran-2(5H)-ones were designed, prepared and tested for antibacterial activities. Some of them showed significant antibacterial activity against Gram-positive organism, Gram-negative organism and fungus. Out of these compounds, 4-(2-(3-chlorophenylformyloxy)ethoxy)-3-(4-chlorophenyl)furan-2(5H)-one (d40) showed the widest spectrum of activity with MIC50 of 2.0μg/mL against Staphylococcus aureus, 4.3μg/mL against Escherichia coli, 1.5μg/mL against Pseudomonas aeruginosa and 1.2μg/mL against Candida albicans. Our data disclosed that MIC50 values against whole cell bacteria are positive correlation with MIC50 values against tyrosyl-tRNA synthetase. Meanwhile, molecular docking of d40 into S. aureus tyrosyl-tRNA synthetase active site was also performed, and the inhibitor tightly fitting the active site might be an important reason why it has high antimicrobial activity. |
---|---|
ISSN: | 0968-0896 1464-3391 |
DOI: | 10.1016/j.bmc.2013.06.066 |