Loading…

Yield stability of hybrids versus lines in wheat, barley, and triticale

KEY MESSAGE : We present experimental data for wheat, barley, and triticale suggesting that hybrids manifest on average higher yield stability than inbred lines. Yield stability is assumed to be higher for hybrids than for inbred lines, but experimental data proving this hypothesis is scarce for aut...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical and applied genetics 2014-02, Vol.127 (2), p.309-316
Main Authors: Mühleisen, Jonathan, Piepho, Hans-Peter, Maurer, Hans Peter, Longin, Carl Friedrich Horst, Reif, Jochen Christoph
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:KEY MESSAGE : We present experimental data for wheat, barley, and triticale suggesting that hybrids manifest on average higher yield stability than inbred lines. Yield stability is assumed to be higher for hybrids than for inbred lines, but experimental data proving this hypothesis is scarce for autogamous cereals. We used multi-location grain yield trials and compared the yield stability of hybrids versus lines for wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), and triticale (×Triticosecale Wittmack). Our study comprised three phenotypic data sets of 1,749 wheat, 96 barley, and 130 triticale genotypes, which were evaluated for grain yield in up to five contrasting locations. Yield stability of the group of hybrids was compared with that of the group of inbred lines estimating the stability variance. For all three crops we observed a significantly (P < 0.05) higher yield stability of hybrids compared to lines. The enhanced yield stability of hybrids as compared to lines represents a major step forward, facilitating coping with the increasing abiotic stress expected from the predicted climate change.
ISSN:0040-5752
1432-2242
DOI:10.1007/s00122-013-2219-1