Loading…

Experimental investigation of acoustic streaming in a cylindrical wave guide up to high streaming Reynolds numbers

Measurements of streaming velocity are performed by means of Laser Doppler Velocimetry and Particle Image Velociimetry in an experimental apparatus consisting of a cylindrical waveguide having one loudspeaker at each end for high intensity sound levels. The case of high nonlinear Reynolds number ReN...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of the Acoustical Society of America 2014-01, Vol.135 (1), p.27-37
Main Authors: Reyt, Ida, Bailliet, Hélène, Valière, Jean-Christophe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c285t-6306ce85a7dab6f23343d1c651b2c4f16053b933486ea0006d69c2264d5bcdab3
cites cdi_FETCH-LOGICAL-c285t-6306ce85a7dab6f23343d1c651b2c4f16053b933486ea0006d69c2264d5bcdab3
container_end_page 37
container_issue 1
container_start_page 27
container_title The Journal of the Acoustical Society of America
container_volume 135
creator Reyt, Ida
Bailliet, Hélène
Valière, Jean-Christophe
description Measurements of streaming velocity are performed by means of Laser Doppler Velocimetry and Particle Image Velociimetry in an experimental apparatus consisting of a cylindrical waveguide having one loudspeaker at each end for high intensity sound levels. The case of high nonlinear Reynolds number ReNL is particularly investigated. The variation of axial streaming velocity with respect to the axial and to the transverse coordinates are compared to available Rayleigh streaming theory. As expected, the measured streaming velocity agrees well with the Rayleigh streaming theory for small ReNL but deviates significantly from such predictions for high ReNL. When the nonlinear Reynolds number is increased, the outer centerline axial streaming velocity gets distorted towards the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes. This kind of behavior is followed by outer streaming cells only and measurements in the near wall region show that inner streaming vortices are less affected by this substantial evolution of fast streaming pattern. Measurements of the transient evolution of streaming velocity provide an additional insight into the evolution of fast streaming.
doi_str_mv 10.1121/1.4837855
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1503540560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1503540560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-6306ce85a7dab6f23343d1c651b2c4f16053b933486ea0006d69c2264d5bcdab3</originalsourceid><addsrcrecordid>eNpNkE1LxDAYhIMo7rp68A9Ijnromu-2R1nWD1gQRM8lTdJupE1r0q723xvZVTy9vMMzAzMAXGK0xJjgW7xkGU0zzo_AHHOCkowTdgzmCCGcsFyIGTgL4T2-PKP5KZgRxmiaMjIHfv3VG29b4wbZQOt2Jgy2loPtHOwqKFU3RkHBMHgjW-vqyEAJ1dRYp71V0fQpdwbWo9UGjj0cOri19faf4cVMrmt0gG5sS-PDOTipZBPMxeEuwNv9-nX1mGyeH55Wd5tEkYwPiaBIKJNxmWpZiopQyqjGSnBcEsUqLBCnZR7VTBgZqwktckWIYJqXKlroAlzvc3vffYyxV9HaoEzTSGdiqwJzRDlDXKCI3uxR5bsQvKmKPm4i_VRgVPxMXODiMHFkrw6xY9ka_Uf-bkq_AWcxd1c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503540560</pqid></control><display><type>article</type><title>Experimental investigation of acoustic streaming in a cylindrical wave guide up to high streaming Reynolds numbers</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Reyt, Ida ; Bailliet, Hélène ; Valière, Jean-Christophe</creator><creatorcontrib>Reyt, Ida ; Bailliet, Hélène ; Valière, Jean-Christophe</creatorcontrib><description>Measurements of streaming velocity are performed by means of Laser Doppler Velocimetry and Particle Image Velociimetry in an experimental apparatus consisting of a cylindrical waveguide having one loudspeaker at each end for high intensity sound levels. The case of high nonlinear Reynolds number ReNL is particularly investigated. The variation of axial streaming velocity with respect to the axial and to the transverse coordinates are compared to available Rayleigh streaming theory. As expected, the measured streaming velocity agrees well with the Rayleigh streaming theory for small ReNL but deviates significantly from such predictions for high ReNL. When the nonlinear Reynolds number is increased, the outer centerline axial streaming velocity gets distorted towards the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes. This kind of behavior is followed by outer streaming cells only and measurements in the near wall region show that inner streaming vortices are less affected by this substantial evolution of fast streaming pattern. Measurements of the transient evolution of streaming velocity provide an additional insight into the evolution of fast streaming.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.4837855</identifier><identifier>PMID: 24437742</identifier><language>eng</language><publisher>United States</publisher><subject>Acoustics ; Laser-Doppler Flowmetry ; Models, Theoretical ; Motion ; Nonlinear Dynamics ; Pressure ; Signal Processing, Computer-Assisted ; Sound ; Sound Spectrography ; Time Factors</subject><ispartof>The Journal of the Acoustical Society of America, 2014-01, Vol.135 (1), p.27-37</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-6306ce85a7dab6f23343d1c651b2c4f16053b933486ea0006d69c2264d5bcdab3</citedby><cites>FETCH-LOGICAL-c285t-6306ce85a7dab6f23343d1c651b2c4f16053b933486ea0006d69c2264d5bcdab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24437742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reyt, Ida</creatorcontrib><creatorcontrib>Bailliet, Hélène</creatorcontrib><creatorcontrib>Valière, Jean-Christophe</creatorcontrib><title>Experimental investigation of acoustic streaming in a cylindrical wave guide up to high streaming Reynolds numbers</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>Measurements of streaming velocity are performed by means of Laser Doppler Velocimetry and Particle Image Velociimetry in an experimental apparatus consisting of a cylindrical waveguide having one loudspeaker at each end for high intensity sound levels. The case of high nonlinear Reynolds number ReNL is particularly investigated. The variation of axial streaming velocity with respect to the axial and to the transverse coordinates are compared to available Rayleigh streaming theory. As expected, the measured streaming velocity agrees well with the Rayleigh streaming theory for small ReNL but deviates significantly from such predictions for high ReNL. When the nonlinear Reynolds number is increased, the outer centerline axial streaming velocity gets distorted towards the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes. This kind of behavior is followed by outer streaming cells only and measurements in the near wall region show that inner streaming vortices are less affected by this substantial evolution of fast streaming pattern. Measurements of the transient evolution of streaming velocity provide an additional insight into the evolution of fast streaming.</description><subject>Acoustics</subject><subject>Laser-Doppler Flowmetry</subject><subject>Models, Theoretical</subject><subject>Motion</subject><subject>Nonlinear Dynamics</subject><subject>Pressure</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Sound</subject><subject>Sound Spectrography</subject><subject>Time Factors</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LxDAYhIMo7rp68A9Ijnromu-2R1nWD1gQRM8lTdJupE1r0q723xvZVTy9vMMzAzMAXGK0xJjgW7xkGU0zzo_AHHOCkowTdgzmCCGcsFyIGTgL4T2-PKP5KZgRxmiaMjIHfv3VG29b4wbZQOt2Jgy2loPtHOwqKFU3RkHBMHgjW-vqyEAJ1dRYp71V0fQpdwbWo9UGjj0cOri19faf4cVMrmt0gG5sS-PDOTipZBPMxeEuwNv9-nX1mGyeH55Wd5tEkYwPiaBIKJNxmWpZiopQyqjGSnBcEsUqLBCnZR7VTBgZqwktckWIYJqXKlroAlzvc3vffYyxV9HaoEzTSGdiqwJzRDlDXKCI3uxR5bsQvKmKPm4i_VRgVPxMXODiMHFkrw6xY9ka_Uf-bkq_AWcxd1c</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Reyt, Ida</creator><creator>Bailliet, Hélène</creator><creator>Valière, Jean-Christophe</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201401</creationdate><title>Experimental investigation of acoustic streaming in a cylindrical wave guide up to high streaming Reynolds numbers</title><author>Reyt, Ida ; Bailliet, Hélène ; Valière, Jean-Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-6306ce85a7dab6f23343d1c651b2c4f16053b933486ea0006d69c2264d5bcdab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acoustics</topic><topic>Laser-Doppler Flowmetry</topic><topic>Models, Theoretical</topic><topic>Motion</topic><topic>Nonlinear Dynamics</topic><topic>Pressure</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Sound</topic><topic>Sound Spectrography</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reyt, Ida</creatorcontrib><creatorcontrib>Bailliet, Hélène</creatorcontrib><creatorcontrib>Valière, Jean-Christophe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reyt, Ida</au><au>Bailliet, Hélène</au><au>Valière, Jean-Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental investigation of acoustic streaming in a cylindrical wave guide up to high streaming Reynolds numbers</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2014-01</date><risdate>2014</risdate><volume>135</volume><issue>1</issue><spage>27</spage><epage>37</epage><pages>27-37</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>Measurements of streaming velocity are performed by means of Laser Doppler Velocimetry and Particle Image Velociimetry in an experimental apparatus consisting of a cylindrical waveguide having one loudspeaker at each end for high intensity sound levels. The case of high nonlinear Reynolds number ReNL is particularly investigated. The variation of axial streaming velocity with respect to the axial and to the transverse coordinates are compared to available Rayleigh streaming theory. As expected, the measured streaming velocity agrees well with the Rayleigh streaming theory for small ReNL but deviates significantly from such predictions for high ReNL. When the nonlinear Reynolds number is increased, the outer centerline axial streaming velocity gets distorted towards the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes. This kind of behavior is followed by outer streaming cells only and measurements in the near wall region show that inner streaming vortices are less affected by this substantial evolution of fast streaming pattern. Measurements of the transient evolution of streaming velocity provide an additional insight into the evolution of fast streaming.</abstract><cop>United States</cop><pmid>24437742</pmid><doi>10.1121/1.4837855</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2014-01, Vol.135 (1), p.27-37
issn 0001-4966
1520-8524
language eng
recordid cdi_proquest_miscellaneous_1503540560
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Acoustics
Laser-Doppler Flowmetry
Models, Theoretical
Motion
Nonlinear Dynamics
Pressure
Signal Processing, Computer-Assisted
Sound
Sound Spectrography
Time Factors
title Experimental investigation of acoustic streaming in a cylindrical wave guide up to high streaming Reynolds numbers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A49%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20investigation%20of%20acoustic%20streaming%20in%20a%20cylindrical%20wave%20guide%20up%20to%20high%20streaming%20Reynolds%20numbers&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Reyt,%20Ida&rft.date=2014-01&rft.volume=135&rft.issue=1&rft.spage=27&rft.epage=37&rft.pages=27-37&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/1.4837855&rft_dat=%3Cproquest_cross%3E1503540560%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c285t-6306ce85a7dab6f23343d1c651b2c4f16053b933486ea0006d69c2264d5bcdab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1503540560&rft_id=info:pmid/24437742&rfr_iscdi=true