Loading…

Aerobic and anaerobic oxidation of hydrogen by acidophilic bacteria

Abstract While many prokaryotic species are known to use hydrogen as an electron donor to support their growth, this trait has only previously been reported for two acidophilic bacteria, Hydrogenobaculum acidophilum (in the presence of reduced sulfur) and Acidithiobacillus (At.) ferrooxidans. To tes...

Full description

Saved in:
Bibliographic Details
Published in:FEMS microbiology letters 2013-12, Vol.349 (1), p.40-45
Main Authors: Hedrich, Sabrina, Johnson, D. Barrie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract While many prokaryotic species are known to use hydrogen as an electron donor to support their growth, this trait has only previously been reported for two acidophilic bacteria, Hydrogenobaculum acidophilum (in the presence of reduced sulfur) and Acidithiobacillus (At.) ferrooxidans. To test the hypothesis that hydrogen may be utilized more widely by acidophilic bacteria, 38 strains of acidophilic bacteria, including representatives of 20 designated and four proposed species, were screened for their abilities to grow via the dissimilatory oxidation of hydrogen. Growth was demonstrated in several species of acidophiles that also use other inorganic electron donors (ferrous iron and sulfur) but in none of the obligately heterotrophic species tested. Strains of At. ferrooxidans, At. ferridurans and At. caldus, grew chemolithotrophically on hydrogen, though those of At. thiooxidans and At. ferrivorans did not. Growth was also observed with Sulfobacillus acidophilus, Sb. benefaciens and Sb. thermosulfidooxidans, though not with other iron-oxidizing Firmicutes. Similarly, Acidimicrobium ferrooxidans grew on hydrogen, closely related acidophilic actinobacteria did not. Growth yields of At. ferrooxidans and At. ferridurans grown aerobically on hydrogen (c. 1010 cells mL−1) were far greater than typically obtained using other electron donors. Several species also grew anaerobically by coupling hydrogen oxidation to the reduction of ferric iron.
ISSN:0378-1097
1574-6968
DOI:10.1111/1574-6968.12290