Loading…
Sponge biomass and bioerosion rates increase under ocean warming and acidification
The combination of ocean warming and acidification as a result of increasing atmospheric carbon dioxide (CO2) is considered to be a significant threat to calcifying organisms and their activities on coral reefs. How these global changes impact the important roles of decalcifying organisms (bioeroder...
Saved in:
Published in: | Global change biology 2013-12, Vol.19 (12), p.3581-3591 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5204-d70a2637c86ae4e12a03a41a60795f326719071982197a431c13e330a36ff4d63 |
---|---|
cites | cdi_FETCH-LOGICAL-c5204-d70a2637c86ae4e12a03a41a60795f326719071982197a431c13e330a36ff4d63 |
container_end_page | 3591 |
container_issue | 12 |
container_start_page | 3581 |
container_title | Global change biology |
container_volume | 19 |
creator | Fang, James K. H. Mello-Athayde, Matheus A. Schönberg, Christine H. L. Kline, David I. Hoegh-Guldberg, Ove Dove, Sophie |
description | The combination of ocean warming and acidification as a result of increasing atmospheric carbon dioxide (CO2) is considered to be a significant threat to calcifying organisms and their activities on coral reefs. How these global changes impact the important roles of decalcifying organisms (bioeroders) in the regulation of carbonate budgets, however, is less understood. To address this important question, the effects of a range of past, present and future CO2 emission scenarios (temperature + acidification) on the excavating sponge Cliona orientalis Thiele, 1900 were explored over 12 weeks in early summer on the southern Great Barrier Reef. C. orientalis is a widely distributed bioeroder on many reefs, and hosts symbiotic dinoflagellates of the genus Symbiodinium. Our results showed that biomass production and bioerosion rates of C. orientalis were similar under a pre‐industrial scenario and a present day (control) scenario. Symbiodinium population density in the sponge tissue was the highest under the pre‐industrial scenario, and decreased towards the two future scenarios with sponge replicates under the ‘business‐as‐usual’ CO2 emission scenario exhibiting strong bleaching. Despite these changes, biomass production and the ability of the sponge to erode coral carbonate materials both increased under the future scenarios. Our study suggests that C. orientalis will likely grow faster and have higher bioerosion rates in a high CO2 future than at present, even with significant bleaching. Assuming that our findings hold for excavating sponges in general, increased sponge biomass coupled with accelerated bioerosion may push coral reefs towards net erosion and negative carbonate budgets in the future. |
doi_str_mv | 10.1111/gcb.12334 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1504449553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3120965991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5204-d70a2637c86ae4e12a03a41a60795f326719071982197a431c13e330a36ff4d63</originalsourceid><addsrcrecordid>eNqFkdFrFDEQxoMotlYf_AdkQQr6sG2SSbK7j_bQUygKttrHMJedPVJ3s2dyS-1_b7Z3rSCIgZB5-H3fTOZj7KXgJyKf07VbnQgJoB6xQwFGl1LV5vFca1UKLuCAPUvpmnMOkpun7EBC3YCW9SH7erEZw5qKlR8HTKnA0M41xTH5MRQRt5QKH1wkTFRMoaVYjI4wFDcYBx_Wdwp0vvWdd7jNoufsSYd9ohf794h9-_D-cvGxPP-y_LR4d146Lbkq24qjNFC52iApEhI5oBJoeNXoDqSpRMPzraVoKlQgnAAC4Aim61Rr4Ii92flu4vhzorS1g0-O-h4DjVOyQnOlVKM1_B9VRmmhteAZff0Xej1OMeSPZEo1slGVmA3f7iiXF5UidXYT_YDx1gpu50xszsTeZZLZV3vHaTVQ-0Deh5CB4z2AyWHfRQzOpz9c3ofizTza6Y678T3d_rujXS7O7luXO4VPW_r1oMD4w5oKKm2vPi8tXKnvhi-kXcJv75euDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449294713</pqid></control><display><type>article</type><title>Sponge biomass and bioerosion rates increase under ocean warming and acidification</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Fang, James K. H. ; Mello-Athayde, Matheus A. ; Schönberg, Christine H. L. ; Kline, David I. ; Hoegh-Guldberg, Ove ; Dove, Sophie</creator><creatorcontrib>Fang, James K. H. ; Mello-Athayde, Matheus A. ; Schönberg, Christine H. L. ; Kline, David I. ; Hoegh-Guldberg, Ove ; Dove, Sophie</creatorcontrib><description>The combination of ocean warming and acidification as a result of increasing atmospheric carbon dioxide (CO2) is considered to be a significant threat to calcifying organisms and their activities on coral reefs. How these global changes impact the important roles of decalcifying organisms (bioeroders) in the regulation of carbonate budgets, however, is less understood. To address this important question, the effects of a range of past, present and future CO2 emission scenarios (temperature + acidification) on the excavating sponge Cliona orientalis Thiele, 1900 were explored over 12 weeks in early summer on the southern Great Barrier Reef. C. orientalis is a widely distributed bioeroder on many reefs, and hosts symbiotic dinoflagellates of the genus Symbiodinium. Our results showed that biomass production and bioerosion rates of C. orientalis were similar under a pre‐industrial scenario and a present day (control) scenario. Symbiodinium population density in the sponge tissue was the highest under the pre‐industrial scenario, and decreased towards the two future scenarios with sponge replicates under the ‘business‐as‐usual’ CO2 emission scenario exhibiting strong bleaching. Despite these changes, biomass production and the ability of the sponge to erode coral carbonate materials both increased under the future scenarios. Our study suggests that C. orientalis will likely grow faster and have higher bioerosion rates in a high CO2 future than at present, even with significant bleaching. Assuming that our findings hold for excavating sponges in general, increased sponge biomass coupled with accelerated bioerosion may push coral reefs towards net erosion and negative carbonate budgets in the future.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.12334</identifier><identifier>PMID: 23893528</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Acidification ; Animal and plant ecology ; Animal, plant and microbial ecology ; Animals ; bioerosion ; Biological and medical sciences ; Biomass ; carbon dioxide ; Chemical oceanography ; Climate Change ; Climatology. Bioclimatology. Climate change ; Cliona orientalis ; Coral Reefs ; Dinoflagellida - physiology ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Fundamental and applied biological sciences. Psychology ; General aspects ; Global warming ; Hydrogen-Ion Concentration ; Invertebrates ; Marine ; Meteorology ; Ocean temperature ; Oceans and Seas ; Population Dynamics ; Porifera ; Porifera - physiology ; Seawater - chemistry ; sponges ; Symbiodinium ; temperature</subject><ispartof>Global change biology, 2013-12, Vol.19 (12), p.3581-3591</ispartof><rights>2013 John Wiley & Sons Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2013 John Wiley & Sons Ltd.</rights><rights>Copyright © 2013 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5204-d70a2637c86ae4e12a03a41a60795f326719071982197a431c13e330a36ff4d63</citedby><cites>FETCH-LOGICAL-c5204-d70a2637c86ae4e12a03a41a60795f326719071982197a431c13e330a36ff4d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27954090$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23893528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, James K. H.</creatorcontrib><creatorcontrib>Mello-Athayde, Matheus A.</creatorcontrib><creatorcontrib>Schönberg, Christine H. L.</creatorcontrib><creatorcontrib>Kline, David I.</creatorcontrib><creatorcontrib>Hoegh-Guldberg, Ove</creatorcontrib><creatorcontrib>Dove, Sophie</creatorcontrib><title>Sponge biomass and bioerosion rates increase under ocean warming and acidification</title><title>Global change biology</title><addtitle>Glob Change Biol</addtitle><description>The combination of ocean warming and acidification as a result of increasing atmospheric carbon dioxide (CO2) is considered to be a significant threat to calcifying organisms and their activities on coral reefs. How these global changes impact the important roles of decalcifying organisms (bioeroders) in the regulation of carbonate budgets, however, is less understood. To address this important question, the effects of a range of past, present and future CO2 emission scenarios (temperature + acidification) on the excavating sponge Cliona orientalis Thiele, 1900 were explored over 12 weeks in early summer on the southern Great Barrier Reef. C. orientalis is a widely distributed bioeroder on many reefs, and hosts symbiotic dinoflagellates of the genus Symbiodinium. Our results showed that biomass production and bioerosion rates of C. orientalis were similar under a pre‐industrial scenario and a present day (control) scenario. Symbiodinium population density in the sponge tissue was the highest under the pre‐industrial scenario, and decreased towards the two future scenarios with sponge replicates under the ‘business‐as‐usual’ CO2 emission scenario exhibiting strong bleaching. Despite these changes, biomass production and the ability of the sponge to erode coral carbonate materials both increased under the future scenarios. Our study suggests that C. orientalis will likely grow faster and have higher bioerosion rates in a high CO2 future than at present, even with significant bleaching. Assuming that our findings hold for excavating sponges in general, increased sponge biomass coupled with accelerated bioerosion may push coral reefs towards net erosion and negative carbonate budgets in the future.</description><subject>Acidification</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>bioerosion</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>carbon dioxide</subject><subject>Chemical oceanography</subject><subject>Climate Change</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>Cliona orientalis</subject><subject>Coral Reefs</subject><subject>Dinoflagellida - physiology</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Global warming</subject><subject>Hydrogen-Ion Concentration</subject><subject>Invertebrates</subject><subject>Marine</subject><subject>Meteorology</subject><subject>Ocean temperature</subject><subject>Oceans and Seas</subject><subject>Population Dynamics</subject><subject>Porifera</subject><subject>Porifera - physiology</subject><subject>Seawater - chemistry</subject><subject>sponges</subject><subject>Symbiodinium</subject><subject>temperature</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkdFrFDEQxoMotlYf_AdkQQr6sG2SSbK7j_bQUygKttrHMJedPVJ3s2dyS-1_b7Z3rSCIgZB5-H3fTOZj7KXgJyKf07VbnQgJoB6xQwFGl1LV5vFca1UKLuCAPUvpmnMOkpun7EBC3YCW9SH7erEZw5qKlR8HTKnA0M41xTH5MRQRt5QKH1wkTFRMoaVYjI4wFDcYBx_Wdwp0vvWdd7jNoufsSYd9ohf794h9-_D-cvGxPP-y_LR4d146Lbkq24qjNFC52iApEhI5oBJoeNXoDqSpRMPzraVoKlQgnAAC4Aim61Rr4Ii92flu4vhzorS1g0-O-h4DjVOyQnOlVKM1_B9VRmmhteAZff0Xej1OMeSPZEo1slGVmA3f7iiXF5UidXYT_YDx1gpu50xszsTeZZLZV3vHaTVQ-0Deh5CB4z2AyWHfRQzOpz9c3ofizTza6Y678T3d_rujXS7O7luXO4VPW_r1oMD4w5oKKm2vPi8tXKnvhi-kXcJv75euDg</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Fang, James K. H.</creator><creator>Mello-Athayde, Matheus A.</creator><creator>Schönberg, Christine H. L.</creator><creator>Kline, David I.</creator><creator>Hoegh-Guldberg, Ove</creator><creator>Dove, Sophie</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7ST</scope><scope>7TN</scope><scope>7U6</scope><scope>H95</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201312</creationdate><title>Sponge biomass and bioerosion rates increase under ocean warming and acidification</title><author>Fang, James K. H. ; Mello-Athayde, Matheus A. ; Schönberg, Christine H. L. ; Kline, David I. ; Hoegh-Guldberg, Ove ; Dove, Sophie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5204-d70a2637c86ae4e12a03a41a60795f326719071982197a431c13e330a36ff4d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acidification</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>bioerosion</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>carbon dioxide</topic><topic>Chemical oceanography</topic><topic>Climate Change</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>Cliona orientalis</topic><topic>Coral Reefs</topic><topic>Dinoflagellida - physiology</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Global warming</topic><topic>Hydrogen-Ion Concentration</topic><topic>Invertebrates</topic><topic>Marine</topic><topic>Meteorology</topic><topic>Ocean temperature</topic><topic>Oceans and Seas</topic><topic>Population Dynamics</topic><topic>Porifera</topic><topic>Porifera - physiology</topic><topic>Seawater - chemistry</topic><topic>sponges</topic><topic>Symbiodinium</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, James K. H.</creatorcontrib><creatorcontrib>Mello-Athayde, Matheus A.</creatorcontrib><creatorcontrib>Schönberg, Christine H. L.</creatorcontrib><creatorcontrib>Kline, David I.</creatorcontrib><creatorcontrib>Hoegh-Guldberg, Ove</creatorcontrib><creatorcontrib>Dove, Sophie</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, James K. H.</au><au>Mello-Athayde, Matheus A.</au><au>Schönberg, Christine H. L.</au><au>Kline, David I.</au><au>Hoegh-Guldberg, Ove</au><au>Dove, Sophie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sponge biomass and bioerosion rates increase under ocean warming and acidification</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Change Biol</addtitle><date>2013-12</date><risdate>2013</risdate><volume>19</volume><issue>12</issue><spage>3581</spage><epage>3591</epage><pages>3581-3591</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>The combination of ocean warming and acidification as a result of increasing atmospheric carbon dioxide (CO2) is considered to be a significant threat to calcifying organisms and their activities on coral reefs. How these global changes impact the important roles of decalcifying organisms (bioeroders) in the regulation of carbonate budgets, however, is less understood. To address this important question, the effects of a range of past, present and future CO2 emission scenarios (temperature + acidification) on the excavating sponge Cliona orientalis Thiele, 1900 were explored over 12 weeks in early summer on the southern Great Barrier Reef. C. orientalis is a widely distributed bioeroder on many reefs, and hosts symbiotic dinoflagellates of the genus Symbiodinium. Our results showed that biomass production and bioerosion rates of C. orientalis were similar under a pre‐industrial scenario and a present day (control) scenario. Symbiodinium population density in the sponge tissue was the highest under the pre‐industrial scenario, and decreased towards the two future scenarios with sponge replicates under the ‘business‐as‐usual’ CO2 emission scenario exhibiting strong bleaching. Despite these changes, biomass production and the ability of the sponge to erode coral carbonate materials both increased under the future scenarios. Our study suggests that C. orientalis will likely grow faster and have higher bioerosion rates in a high CO2 future than at present, even with significant bleaching. Assuming that our findings hold for excavating sponges in general, increased sponge biomass coupled with accelerated bioerosion may push coral reefs towards net erosion and negative carbonate budgets in the future.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><pmid>23893528</pmid><doi>10.1111/gcb.12334</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1354-1013 |
ispartof | Global change biology, 2013-12, Vol.19 (12), p.3581-3591 |
issn | 1354-1013 1365-2486 |
language | eng |
recordid | cdi_proquest_miscellaneous_1504449553 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Acidification Animal and plant ecology Animal, plant and microbial ecology Animals bioerosion Biological and medical sciences Biomass carbon dioxide Chemical oceanography Climate Change Climatology. Bioclimatology. Climate change Cliona orientalis Coral Reefs Dinoflagellida - physiology Earth, ocean, space Exact sciences and technology External geophysics Fundamental and applied biological sciences. Psychology General aspects Global warming Hydrogen-Ion Concentration Invertebrates Marine Meteorology Ocean temperature Oceans and Seas Population Dynamics Porifera Porifera - physiology Seawater - chemistry sponges Symbiodinium temperature |
title | Sponge biomass and bioerosion rates increase under ocean warming and acidification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A10%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sponge%20biomass%20and%20bioerosion%20rates%20increase%20under%20ocean%20warming%20and%20acidification&rft.jtitle=Global%20change%20biology&rft.au=Fang,%20James%20K.%20H.&rft.date=2013-12&rft.volume=19&rft.issue=12&rft.spage=3581&rft.epage=3591&rft.pages=3581-3591&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.12334&rft_dat=%3Cproquest_cross%3E3120965991%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5204-d70a2637c86ae4e12a03a41a60795f326719071982197a431c13e330a36ff4d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1449294713&rft_id=info:pmid/23893528&rfr_iscdi=true |