Loading…

Sponge biomass and bioerosion rates increase under ocean warming and acidification

The combination of ocean warming and acidification as a result of increasing atmospheric carbon dioxide (CO2) is considered to be a significant threat to calcifying organisms and their activities on coral reefs. How these global changes impact the important roles of decalcifying organisms (bioeroder...

Full description

Saved in:
Bibliographic Details
Published in:Global change biology 2013-12, Vol.19 (12), p.3581-3591
Main Authors: Fang, James K. H., Mello-Athayde, Matheus A., Schönberg, Christine H. L., Kline, David I., Hoegh-Guldberg, Ove, Dove, Sophie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5204-d70a2637c86ae4e12a03a41a60795f326719071982197a431c13e330a36ff4d63
cites cdi_FETCH-LOGICAL-c5204-d70a2637c86ae4e12a03a41a60795f326719071982197a431c13e330a36ff4d63
container_end_page 3591
container_issue 12
container_start_page 3581
container_title Global change biology
container_volume 19
creator Fang, James K. H.
Mello-Athayde, Matheus A.
Schönberg, Christine H. L.
Kline, David I.
Hoegh-Guldberg, Ove
Dove, Sophie
description The combination of ocean warming and acidification as a result of increasing atmospheric carbon dioxide (CO2) is considered to be a significant threat to calcifying organisms and their activities on coral reefs. How these global changes impact the important roles of decalcifying organisms (bioeroders) in the regulation of carbonate budgets, however, is less understood. To address this important question, the effects of a range of past, present and future CO2 emission scenarios (temperature + acidification) on the excavating sponge Cliona orientalis Thiele, 1900 were explored over 12 weeks in early summer on the southern Great Barrier Reef. C. orientalis is a widely distributed bioeroder on many reefs, and hosts symbiotic dinoflagellates of the genus Symbiodinium. Our results showed that biomass production and bioerosion rates of C. orientalis were similar under a pre‐industrial scenario and a present day (control) scenario. Symbiodinium population density in the sponge tissue was the highest under the pre‐industrial scenario, and decreased towards the two future scenarios with sponge replicates under the ‘business‐as‐usual’ CO2 emission scenario exhibiting strong bleaching. Despite these changes, biomass production and the ability of the sponge to erode coral carbonate materials both increased under the future scenarios. Our study suggests that C. orientalis will likely grow faster and have higher bioerosion rates in a high CO2 future than at present, even with significant bleaching. Assuming that our findings hold for excavating sponges in general, increased sponge biomass coupled with accelerated bioerosion may push coral reefs towards net erosion and negative carbonate budgets in the future.
doi_str_mv 10.1111/gcb.12334
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1504449553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3120965991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5204-d70a2637c86ae4e12a03a41a60795f326719071982197a431c13e330a36ff4d63</originalsourceid><addsrcrecordid>eNqFkdFrFDEQxoMotlYf_AdkQQr6sG2SSbK7j_bQUygKttrHMJedPVJ3s2dyS-1_b7Z3rSCIgZB5-H3fTOZj7KXgJyKf07VbnQgJoB6xQwFGl1LV5vFca1UKLuCAPUvpmnMOkpun7EBC3YCW9SH7erEZw5qKlR8HTKnA0M41xTH5MRQRt5QKH1wkTFRMoaVYjI4wFDcYBx_Wdwp0vvWdd7jNoufsSYd9ohf794h9-_D-cvGxPP-y_LR4d146Lbkq24qjNFC52iApEhI5oBJoeNXoDqSpRMPzraVoKlQgnAAC4Aim61Rr4Ii92flu4vhzorS1g0-O-h4DjVOyQnOlVKM1_B9VRmmhteAZff0Xej1OMeSPZEo1slGVmA3f7iiXF5UidXYT_YDx1gpu50xszsTeZZLZV3vHaTVQ-0Deh5CB4z2AyWHfRQzOpz9c3ofizTza6Y678T3d_rujXS7O7luXO4VPW_r1oMD4w5oKKm2vPi8tXKnvhi-kXcJv75euDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449294713</pqid></control><display><type>article</type><title>Sponge biomass and bioerosion rates increase under ocean warming and acidification</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Fang, James K. H. ; Mello-Athayde, Matheus A. ; Schönberg, Christine H. L. ; Kline, David I. ; Hoegh-Guldberg, Ove ; Dove, Sophie</creator><creatorcontrib>Fang, James K. H. ; Mello-Athayde, Matheus A. ; Schönberg, Christine H. L. ; Kline, David I. ; Hoegh-Guldberg, Ove ; Dove, Sophie</creatorcontrib><description>The combination of ocean warming and acidification as a result of increasing atmospheric carbon dioxide (CO2) is considered to be a significant threat to calcifying organisms and their activities on coral reefs. How these global changes impact the important roles of decalcifying organisms (bioeroders) in the regulation of carbonate budgets, however, is less understood. To address this important question, the effects of a range of past, present and future CO2 emission scenarios (temperature + acidification) on the excavating sponge Cliona orientalis Thiele, 1900 were explored over 12 weeks in early summer on the southern Great Barrier Reef. C. orientalis is a widely distributed bioeroder on many reefs, and hosts symbiotic dinoflagellates of the genus Symbiodinium. Our results showed that biomass production and bioerosion rates of C. orientalis were similar under a pre‐industrial scenario and a present day (control) scenario. Symbiodinium population density in the sponge tissue was the highest under the pre‐industrial scenario, and decreased towards the two future scenarios with sponge replicates under the ‘business‐as‐usual’ CO2 emission scenario exhibiting strong bleaching. Despite these changes, biomass production and the ability of the sponge to erode coral carbonate materials both increased under the future scenarios. Our study suggests that C. orientalis will likely grow faster and have higher bioerosion rates in a high CO2 future than at present, even with significant bleaching. Assuming that our findings hold for excavating sponges in general, increased sponge biomass coupled with accelerated bioerosion may push coral reefs towards net erosion and negative carbonate budgets in the future.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.12334</identifier><identifier>PMID: 23893528</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Acidification ; Animal and plant ecology ; Animal, plant and microbial ecology ; Animals ; bioerosion ; Biological and medical sciences ; Biomass ; carbon dioxide ; Chemical oceanography ; Climate Change ; Climatology. Bioclimatology. Climate change ; Cliona orientalis ; Coral Reefs ; Dinoflagellida - physiology ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Fundamental and applied biological sciences. Psychology ; General aspects ; Global warming ; Hydrogen-Ion Concentration ; Invertebrates ; Marine ; Meteorology ; Ocean temperature ; Oceans and Seas ; Population Dynamics ; Porifera ; Porifera - physiology ; Seawater - chemistry ; sponges ; Symbiodinium ; temperature</subject><ispartof>Global change biology, 2013-12, Vol.19 (12), p.3581-3591</ispartof><rights>2013 John Wiley &amp; Sons Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2013 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2013 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5204-d70a2637c86ae4e12a03a41a60795f326719071982197a431c13e330a36ff4d63</citedby><cites>FETCH-LOGICAL-c5204-d70a2637c86ae4e12a03a41a60795f326719071982197a431c13e330a36ff4d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27954090$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23893528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, James K. H.</creatorcontrib><creatorcontrib>Mello-Athayde, Matheus A.</creatorcontrib><creatorcontrib>Schönberg, Christine H. L.</creatorcontrib><creatorcontrib>Kline, David I.</creatorcontrib><creatorcontrib>Hoegh-Guldberg, Ove</creatorcontrib><creatorcontrib>Dove, Sophie</creatorcontrib><title>Sponge biomass and bioerosion rates increase under ocean warming and acidification</title><title>Global change biology</title><addtitle>Glob Change Biol</addtitle><description>The combination of ocean warming and acidification as a result of increasing atmospheric carbon dioxide (CO2) is considered to be a significant threat to calcifying organisms and their activities on coral reefs. How these global changes impact the important roles of decalcifying organisms (bioeroders) in the regulation of carbonate budgets, however, is less understood. To address this important question, the effects of a range of past, present and future CO2 emission scenarios (temperature + acidification) on the excavating sponge Cliona orientalis Thiele, 1900 were explored over 12 weeks in early summer on the southern Great Barrier Reef. C. orientalis is a widely distributed bioeroder on many reefs, and hosts symbiotic dinoflagellates of the genus Symbiodinium. Our results showed that biomass production and bioerosion rates of C. orientalis were similar under a pre‐industrial scenario and a present day (control) scenario. Symbiodinium population density in the sponge tissue was the highest under the pre‐industrial scenario, and decreased towards the two future scenarios with sponge replicates under the ‘business‐as‐usual’ CO2 emission scenario exhibiting strong bleaching. Despite these changes, biomass production and the ability of the sponge to erode coral carbonate materials both increased under the future scenarios. Our study suggests that C. orientalis will likely grow faster and have higher bioerosion rates in a high CO2 future than at present, even with significant bleaching. Assuming that our findings hold for excavating sponges in general, increased sponge biomass coupled with accelerated bioerosion may push coral reefs towards net erosion and negative carbonate budgets in the future.</description><subject>Acidification</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>bioerosion</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>carbon dioxide</subject><subject>Chemical oceanography</subject><subject>Climate Change</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>Cliona orientalis</subject><subject>Coral Reefs</subject><subject>Dinoflagellida - physiology</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Global warming</subject><subject>Hydrogen-Ion Concentration</subject><subject>Invertebrates</subject><subject>Marine</subject><subject>Meteorology</subject><subject>Ocean temperature</subject><subject>Oceans and Seas</subject><subject>Population Dynamics</subject><subject>Porifera</subject><subject>Porifera - physiology</subject><subject>Seawater - chemistry</subject><subject>sponges</subject><subject>Symbiodinium</subject><subject>temperature</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkdFrFDEQxoMotlYf_AdkQQr6sG2SSbK7j_bQUygKttrHMJedPVJ3s2dyS-1_b7Z3rSCIgZB5-H3fTOZj7KXgJyKf07VbnQgJoB6xQwFGl1LV5vFca1UKLuCAPUvpmnMOkpun7EBC3YCW9SH7erEZw5qKlR8HTKnA0M41xTH5MRQRt5QKH1wkTFRMoaVYjI4wFDcYBx_Wdwp0vvWdd7jNoufsSYd9ohf794h9-_D-cvGxPP-y_LR4d146Lbkq24qjNFC52iApEhI5oBJoeNXoDqSpRMPzraVoKlQgnAAC4Aim61Rr4Ii92flu4vhzorS1g0-O-h4DjVOyQnOlVKM1_B9VRmmhteAZff0Xej1OMeSPZEo1slGVmA3f7iiXF5UidXYT_YDx1gpu50xszsTeZZLZV3vHaTVQ-0Deh5CB4z2AyWHfRQzOpz9c3ofizTza6Y678T3d_rujXS7O7luXO4VPW_r1oMD4w5oKKm2vPi8tXKnvhi-kXcJv75euDg</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Fang, James K. H.</creator><creator>Mello-Athayde, Matheus A.</creator><creator>Schönberg, Christine H. L.</creator><creator>Kline, David I.</creator><creator>Hoegh-Guldberg, Ove</creator><creator>Dove, Sophie</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7ST</scope><scope>7TN</scope><scope>7U6</scope><scope>H95</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201312</creationdate><title>Sponge biomass and bioerosion rates increase under ocean warming and acidification</title><author>Fang, James K. H. ; Mello-Athayde, Matheus A. ; Schönberg, Christine H. L. ; Kline, David I. ; Hoegh-Guldberg, Ove ; Dove, Sophie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5204-d70a2637c86ae4e12a03a41a60795f326719071982197a431c13e330a36ff4d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acidification</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>bioerosion</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>carbon dioxide</topic><topic>Chemical oceanography</topic><topic>Climate Change</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>Cliona orientalis</topic><topic>Coral Reefs</topic><topic>Dinoflagellida - physiology</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Global warming</topic><topic>Hydrogen-Ion Concentration</topic><topic>Invertebrates</topic><topic>Marine</topic><topic>Meteorology</topic><topic>Ocean temperature</topic><topic>Oceans and Seas</topic><topic>Population Dynamics</topic><topic>Porifera</topic><topic>Porifera - physiology</topic><topic>Seawater - chemistry</topic><topic>sponges</topic><topic>Symbiodinium</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, James K. H.</creatorcontrib><creatorcontrib>Mello-Athayde, Matheus A.</creatorcontrib><creatorcontrib>Schönberg, Christine H. L.</creatorcontrib><creatorcontrib>Kline, David I.</creatorcontrib><creatorcontrib>Hoegh-Guldberg, Ove</creatorcontrib><creatorcontrib>Dove, Sophie</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, James K. H.</au><au>Mello-Athayde, Matheus A.</au><au>Schönberg, Christine H. L.</au><au>Kline, David I.</au><au>Hoegh-Guldberg, Ove</au><au>Dove, Sophie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sponge biomass and bioerosion rates increase under ocean warming and acidification</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Change Biol</addtitle><date>2013-12</date><risdate>2013</risdate><volume>19</volume><issue>12</issue><spage>3581</spage><epage>3591</epage><pages>3581-3591</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>The combination of ocean warming and acidification as a result of increasing atmospheric carbon dioxide (CO2) is considered to be a significant threat to calcifying organisms and their activities on coral reefs. How these global changes impact the important roles of decalcifying organisms (bioeroders) in the regulation of carbonate budgets, however, is less understood. To address this important question, the effects of a range of past, present and future CO2 emission scenarios (temperature + acidification) on the excavating sponge Cliona orientalis Thiele, 1900 were explored over 12 weeks in early summer on the southern Great Barrier Reef. C. orientalis is a widely distributed bioeroder on many reefs, and hosts symbiotic dinoflagellates of the genus Symbiodinium. Our results showed that biomass production and bioerosion rates of C. orientalis were similar under a pre‐industrial scenario and a present day (control) scenario. Symbiodinium population density in the sponge tissue was the highest under the pre‐industrial scenario, and decreased towards the two future scenarios with sponge replicates under the ‘business‐as‐usual’ CO2 emission scenario exhibiting strong bleaching. Despite these changes, biomass production and the ability of the sponge to erode coral carbonate materials both increased under the future scenarios. Our study suggests that C. orientalis will likely grow faster and have higher bioerosion rates in a high CO2 future than at present, even with significant bleaching. Assuming that our findings hold for excavating sponges in general, increased sponge biomass coupled with accelerated bioerosion may push coral reefs towards net erosion and negative carbonate budgets in the future.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><pmid>23893528</pmid><doi>10.1111/gcb.12334</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1354-1013
ispartof Global change biology, 2013-12, Vol.19 (12), p.3581-3591
issn 1354-1013
1365-2486
language eng
recordid cdi_proquest_miscellaneous_1504449553
source Wiley-Blackwell Read & Publish Collection
subjects Acidification
Animal and plant ecology
Animal, plant and microbial ecology
Animals
bioerosion
Biological and medical sciences
Biomass
carbon dioxide
Chemical oceanography
Climate Change
Climatology. Bioclimatology. Climate change
Cliona orientalis
Coral Reefs
Dinoflagellida - physiology
Earth, ocean, space
Exact sciences and technology
External geophysics
Fundamental and applied biological sciences. Psychology
General aspects
Global warming
Hydrogen-Ion Concentration
Invertebrates
Marine
Meteorology
Ocean temperature
Oceans and Seas
Population Dynamics
Porifera
Porifera - physiology
Seawater - chemistry
sponges
Symbiodinium
temperature
title Sponge biomass and bioerosion rates increase under ocean warming and acidification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A10%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sponge%20biomass%20and%20bioerosion%20rates%20increase%20under%20ocean%20warming%20and%20acidification&rft.jtitle=Global%20change%20biology&rft.au=Fang,%20James%20K.%20H.&rft.date=2013-12&rft.volume=19&rft.issue=12&rft.spage=3581&rft.epage=3591&rft.pages=3581-3591&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.12334&rft_dat=%3Cproquest_cross%3E3120965991%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5204-d70a2637c86ae4e12a03a41a60795f326719071982197a431c13e330a36ff4d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1449294713&rft_id=info:pmid/23893528&rfr_iscdi=true