Loading…
Sirt1 Activation Ameliorates Renal Fibrosis by Inhibiting the TGF-β/Smad3 Pathway
ABSTRACT TGF‐β signaling plays an important role in the pathogenesis and progression of chronic kidney disease (CKD). Smad3, a transcription factor, is a critical fibrogenic mediator of TGF‐β. Sirt1 is a NAD+‐dependent deacetylase that has been reported to modify a number of transcription factors to...
Saved in:
Published in: | Journal of cellular biochemistry 2014-05, Vol.115 (5), p.996-1005 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3918-f0400fadefec276207b7861cd34c29e81a2aafd0b16b709f2b8f7aafa9d0c9523 |
---|---|
cites | cdi_FETCH-LOGICAL-c3918-f0400fadefec276207b7861cd34c29e81a2aafd0b16b709f2b8f7aafa9d0c9523 |
container_end_page | 1005 |
container_issue | 5 |
container_start_page | 996 |
container_title | Journal of cellular biochemistry |
container_volume | 115 |
creator | Huang, Xin-Zhong Wen, Donghai Zhang, Min Xie, Qionghong Ma, Leting Guan, Yi Ren, Yueheng Chen, Jing Hao, Chuan-Ming |
description | ABSTRACT
TGF‐β signaling plays an important role in the pathogenesis and progression of chronic kidney disease (CKD). Smad3, a transcription factor, is a critical fibrogenic mediator of TGF‐β. Sirt1 is a NAD+‐dependent deacetylase that has been reported to modify a number of transcription factors to exert certain beneficial health effects. This study examined the effect of Sirt1 on Smad3 and its role in CKD. Resveratrol attenuated the expression of extracelluar matrix proteins in both the remnant kidney of 5/6th nephrectomized rats and cultured mesangial cells (MMCs) exposed to TGF‐β1. The effect of resveratrol was substantially attenuated in cultured MMCs for which Sirt1 had been knocked down by an shRNA lentivirus. Overexpression of Sirt1 attenuated TGF‐β1‐induced extracelluar matrix expression in cultured cells. Co‐immunoprecipitation studies suggested that Sirt1 could bind with Smad3. Resveratrol treatment enhanced this binding and reduced acetylation levels of Smad3. Resveratrol inhibited the transcription activity of Smad3. Knockdown of Sirt1 increased acetylated Smad3 and substantially enhanced the transcriptional activity following TGF‐β1. Finally, Sirt1 deficiency aggravated renal function damage and markedly enhanced fibrosis in the remnant kidney of 5/6 nephrectomized mice. Taken together, these results identify Sirt1 as an important protective factor for renal fibrosis in a CKD rodent model, and the protective function of Sirt1 is attributable to its action on TGF‐β/Smad3 signaling. Therefore, we suggest that Sirt1 may be a potential therapeutic target for the treatment of CKD. J. Cell. Biochem. 115: 996–1005, 2014. © 2014 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/jcb.24748 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1504457319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3041824601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3918-f0400fadefec276207b7861cd34c29e81a2aafd0b16b709f2b8f7aafa9d0c9523</originalsourceid><addsrcrecordid>eNp1kMtuEzEUhi1ERUNhwQsgS2zKYprjy9jjZUhJKC23toilZXs8xGEuxXYoeS0epM_EQNoukFgd6ej7f-n_EHpG4IgA0Ona2SPKJa8eoAkBJQsuOH-IJiAZFJQRuo8ep7QGAKUYfYT2KWelqCo5QecXIWaCZy6HHyaHocezzrdhiCb7hM99b1q8CDYOKSRst_ikXwUbcui_4rzy-HK5KG5-TS86UzP80eTVtdk-QXuNaZN_ensP0OfF68v5m-Lsw_JkPjsrHFOkKhrgAI2pfeMdlYKCtLISxNWMO6p8RQw1pqnBEmElqIbaqpHjx6ganCopO0CHu96rOHzf-JR1F5LzbWt6P2ySJiVwXkpG1Ii--AddD5s4bkuaAScV5QLISL3cUW6cm6Jv9FUMnYlbTUD_Ea1H0fqv6JF9ftu4sZ2v78k7syMw3QHXofXb_zfpt_NXd5XFLhFS9j_vEyZ-00IyWeov75caPglxeqre6WP2G01IlV4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3041824601</pqid></control><display><type>article</type><title>Sirt1 Activation Ameliorates Renal Fibrosis by Inhibiting the TGF-β/Smad3 Pathway</title><source>Wiley</source><creator>Huang, Xin-Zhong ; Wen, Donghai ; Zhang, Min ; Xie, Qionghong ; Ma, Leting ; Guan, Yi ; Ren, Yueheng ; Chen, Jing ; Hao, Chuan-Ming</creator><creatorcontrib>Huang, Xin-Zhong ; Wen, Donghai ; Zhang, Min ; Xie, Qionghong ; Ma, Leting ; Guan, Yi ; Ren, Yueheng ; Chen, Jing ; Hao, Chuan-Ming</creatorcontrib><description>ABSTRACT
TGF‐β signaling plays an important role in the pathogenesis and progression of chronic kidney disease (CKD). Smad3, a transcription factor, is a critical fibrogenic mediator of TGF‐β. Sirt1 is a NAD+‐dependent deacetylase that has been reported to modify a number of transcription factors to exert certain beneficial health effects. This study examined the effect of Sirt1 on Smad3 and its role in CKD. Resveratrol attenuated the expression of extracelluar matrix proteins in both the remnant kidney of 5/6th nephrectomized rats and cultured mesangial cells (MMCs) exposed to TGF‐β1. The effect of resveratrol was substantially attenuated in cultured MMCs for which Sirt1 had been knocked down by an shRNA lentivirus. Overexpression of Sirt1 attenuated TGF‐β1‐induced extracelluar matrix expression in cultured cells. Co‐immunoprecipitation studies suggested that Sirt1 could bind with Smad3. Resveratrol treatment enhanced this binding and reduced acetylation levels of Smad3. Resveratrol inhibited the transcription activity of Smad3. Knockdown of Sirt1 increased acetylated Smad3 and substantially enhanced the transcriptional activity following TGF‐β1. Finally, Sirt1 deficiency aggravated renal function damage and markedly enhanced fibrosis in the remnant kidney of 5/6 nephrectomized mice. Taken together, these results identify Sirt1 as an important protective factor for renal fibrosis in a CKD rodent model, and the protective function of Sirt1 is attributable to its action on TGF‐β/Smad3 signaling. Therefore, we suggest that Sirt1 may be a potential therapeutic target for the treatment of CKD. J. Cell. Biochem. 115: 996–1005, 2014. © 2014 Wiley Periodicals, Inc.</description><identifier>ISSN: 0730-2312</identifier><identifier>EISSN: 1097-4644</identifier><identifier>DOI: 10.1002/jcb.24748</identifier><identifier>PMID: 24356887</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Acetylation ; Animals ; Attenuation ; CHRONIC KIDNEY DISEASE ; FIBROSIS ; Fibrosis - genetics ; Fibrosis - pathology ; Humans ; Immunoprecipitation ; Kidney diseases ; Kidneys ; Mesangial cells ; Mice ; Pathogenesis ; Rats ; Renal function ; Renal Insufficiency, Chronic - chemically induced ; Renal Insufficiency, Chronic - drug therapy ; Renal Insufficiency, Chronic - genetics ; Renal Insufficiency, Chronic - pathology ; RESVERATROL ; Signal Transduction - genetics ; Sirt1 ; SIRT1 protein ; Sirtuin 1 - genetics ; Sirtuin 1 - metabolism ; Smad3 protein ; Smad3 Protein - genetics ; Smad3 Protein - metabolism ; Stilbenes - administration & dosage ; Stilbenes - toxicity ; Therapeutic targets ; Transcription factors ; Transforming Growth Factor beta1 - genetics ; Transforming Growth Factor beta1 - metabolism ; Transforming growth factor-b</subject><ispartof>Journal of cellular biochemistry, 2014-05, Vol.115 (5), p.996-1005</ispartof><rights>2013 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3918-f0400fadefec276207b7861cd34c29e81a2aafd0b16b709f2b8f7aafa9d0c9523</citedby><cites>FETCH-LOGICAL-c3918-f0400fadefec276207b7861cd34c29e81a2aafd0b16b709f2b8f7aafa9d0c9523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24356887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Xin-Zhong</creatorcontrib><creatorcontrib>Wen, Donghai</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Xie, Qionghong</creatorcontrib><creatorcontrib>Ma, Leting</creatorcontrib><creatorcontrib>Guan, Yi</creatorcontrib><creatorcontrib>Ren, Yueheng</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Hao, Chuan-Ming</creatorcontrib><title>Sirt1 Activation Ameliorates Renal Fibrosis by Inhibiting the TGF-β/Smad3 Pathway</title><title>Journal of cellular biochemistry</title><addtitle>J. Cell. Biochem</addtitle><description>ABSTRACT
TGF‐β signaling plays an important role in the pathogenesis and progression of chronic kidney disease (CKD). Smad3, a transcription factor, is a critical fibrogenic mediator of TGF‐β. Sirt1 is a NAD+‐dependent deacetylase that has been reported to modify a number of transcription factors to exert certain beneficial health effects. This study examined the effect of Sirt1 on Smad3 and its role in CKD. Resveratrol attenuated the expression of extracelluar matrix proteins in both the remnant kidney of 5/6th nephrectomized rats and cultured mesangial cells (MMCs) exposed to TGF‐β1. The effect of resveratrol was substantially attenuated in cultured MMCs for which Sirt1 had been knocked down by an shRNA lentivirus. Overexpression of Sirt1 attenuated TGF‐β1‐induced extracelluar matrix expression in cultured cells. Co‐immunoprecipitation studies suggested that Sirt1 could bind with Smad3. Resveratrol treatment enhanced this binding and reduced acetylation levels of Smad3. Resveratrol inhibited the transcription activity of Smad3. Knockdown of Sirt1 increased acetylated Smad3 and substantially enhanced the transcriptional activity following TGF‐β1. Finally, Sirt1 deficiency aggravated renal function damage and markedly enhanced fibrosis in the remnant kidney of 5/6 nephrectomized mice. Taken together, these results identify Sirt1 as an important protective factor for renal fibrosis in a CKD rodent model, and the protective function of Sirt1 is attributable to its action on TGF‐β/Smad3 signaling. Therefore, we suggest that Sirt1 may be a potential therapeutic target for the treatment of CKD. J. Cell. Biochem. 115: 996–1005, 2014. © 2014 Wiley Periodicals, Inc.</description><subject>Acetylation</subject><subject>Animals</subject><subject>Attenuation</subject><subject>CHRONIC KIDNEY DISEASE</subject><subject>FIBROSIS</subject><subject>Fibrosis - genetics</subject><subject>Fibrosis - pathology</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>Kidney diseases</subject><subject>Kidneys</subject><subject>Mesangial cells</subject><subject>Mice</subject><subject>Pathogenesis</subject><subject>Rats</subject><subject>Renal function</subject><subject>Renal Insufficiency, Chronic - chemically induced</subject><subject>Renal Insufficiency, Chronic - drug therapy</subject><subject>Renal Insufficiency, Chronic - genetics</subject><subject>Renal Insufficiency, Chronic - pathology</subject><subject>RESVERATROL</subject><subject>Signal Transduction - genetics</subject><subject>Sirt1</subject><subject>SIRT1 protein</subject><subject>Sirtuin 1 - genetics</subject><subject>Sirtuin 1 - metabolism</subject><subject>Smad3 protein</subject><subject>Smad3 Protein - genetics</subject><subject>Smad3 Protein - metabolism</subject><subject>Stilbenes - administration & dosage</subject><subject>Stilbenes - toxicity</subject><subject>Therapeutic targets</subject><subject>Transcription factors</subject><subject>Transforming Growth Factor beta1 - genetics</subject><subject>Transforming Growth Factor beta1 - metabolism</subject><subject>Transforming growth factor-b</subject><issn>0730-2312</issn><issn>1097-4644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kMtuEzEUhi1ERUNhwQsgS2zKYprjy9jjZUhJKC23toilZXs8xGEuxXYoeS0epM_EQNoukFgd6ej7f-n_EHpG4IgA0Ona2SPKJa8eoAkBJQsuOH-IJiAZFJQRuo8ep7QGAKUYfYT2KWelqCo5QecXIWaCZy6HHyaHocezzrdhiCb7hM99b1q8CDYOKSRst_ikXwUbcui_4rzy-HK5KG5-TS86UzP80eTVtdk-QXuNaZN_ensP0OfF68v5m-Lsw_JkPjsrHFOkKhrgAI2pfeMdlYKCtLISxNWMO6p8RQw1pqnBEmElqIbaqpHjx6ganCopO0CHu96rOHzf-JR1F5LzbWt6P2ySJiVwXkpG1Ii--AddD5s4bkuaAScV5QLISL3cUW6cm6Jv9FUMnYlbTUD_Ea1H0fqv6JF9ftu4sZ2v78k7syMw3QHXofXb_zfpt_NXd5XFLhFS9j_vEyZ-00IyWeov75caPglxeqre6WP2G01IlV4</recordid><startdate>201405</startdate><enddate>201405</enddate><creator>Huang, Xin-Zhong</creator><creator>Wen, Donghai</creator><creator>Zhang, Min</creator><creator>Xie, Qionghong</creator><creator>Ma, Leting</creator><creator>Guan, Yi</creator><creator>Ren, Yueheng</creator><creator>Chen, Jing</creator><creator>Hao, Chuan-Ming</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201405</creationdate><title>Sirt1 Activation Ameliorates Renal Fibrosis by Inhibiting the TGF-β/Smad3 Pathway</title><author>Huang, Xin-Zhong ; Wen, Donghai ; Zhang, Min ; Xie, Qionghong ; Ma, Leting ; Guan, Yi ; Ren, Yueheng ; Chen, Jing ; Hao, Chuan-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3918-f0400fadefec276207b7861cd34c29e81a2aafd0b16b709f2b8f7aafa9d0c9523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acetylation</topic><topic>Animals</topic><topic>Attenuation</topic><topic>CHRONIC KIDNEY DISEASE</topic><topic>FIBROSIS</topic><topic>Fibrosis - genetics</topic><topic>Fibrosis - pathology</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>Kidney diseases</topic><topic>Kidneys</topic><topic>Mesangial cells</topic><topic>Mice</topic><topic>Pathogenesis</topic><topic>Rats</topic><topic>Renal function</topic><topic>Renal Insufficiency, Chronic - chemically induced</topic><topic>Renal Insufficiency, Chronic - drug therapy</topic><topic>Renal Insufficiency, Chronic - genetics</topic><topic>Renal Insufficiency, Chronic - pathology</topic><topic>RESVERATROL</topic><topic>Signal Transduction - genetics</topic><topic>Sirt1</topic><topic>SIRT1 protein</topic><topic>Sirtuin 1 - genetics</topic><topic>Sirtuin 1 - metabolism</topic><topic>Smad3 protein</topic><topic>Smad3 Protein - genetics</topic><topic>Smad3 Protein - metabolism</topic><topic>Stilbenes - administration & dosage</topic><topic>Stilbenes - toxicity</topic><topic>Therapeutic targets</topic><topic>Transcription factors</topic><topic>Transforming Growth Factor beta1 - genetics</topic><topic>Transforming Growth Factor beta1 - metabolism</topic><topic>Transforming growth factor-b</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xin-Zhong</creatorcontrib><creatorcontrib>Wen, Donghai</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Xie, Qionghong</creatorcontrib><creatorcontrib>Ma, Leting</creatorcontrib><creatorcontrib>Guan, Yi</creatorcontrib><creatorcontrib>Ren, Yueheng</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Hao, Chuan-Ming</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xin-Zhong</au><au>Wen, Donghai</au><au>Zhang, Min</au><au>Xie, Qionghong</au><au>Ma, Leting</au><au>Guan, Yi</au><au>Ren, Yueheng</au><au>Chen, Jing</au><au>Hao, Chuan-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sirt1 Activation Ameliorates Renal Fibrosis by Inhibiting the TGF-β/Smad3 Pathway</atitle><jtitle>Journal of cellular biochemistry</jtitle><addtitle>J. Cell. Biochem</addtitle><date>2014-05</date><risdate>2014</risdate><volume>115</volume><issue>5</issue><spage>996</spage><epage>1005</epage><pages>996-1005</pages><issn>0730-2312</issn><eissn>1097-4644</eissn><abstract>ABSTRACT
TGF‐β signaling plays an important role in the pathogenesis and progression of chronic kidney disease (CKD). Smad3, a transcription factor, is a critical fibrogenic mediator of TGF‐β. Sirt1 is a NAD+‐dependent deacetylase that has been reported to modify a number of transcription factors to exert certain beneficial health effects. This study examined the effect of Sirt1 on Smad3 and its role in CKD. Resveratrol attenuated the expression of extracelluar matrix proteins in both the remnant kidney of 5/6th nephrectomized rats and cultured mesangial cells (MMCs) exposed to TGF‐β1. The effect of resveratrol was substantially attenuated in cultured MMCs for which Sirt1 had been knocked down by an shRNA lentivirus. Overexpression of Sirt1 attenuated TGF‐β1‐induced extracelluar matrix expression in cultured cells. Co‐immunoprecipitation studies suggested that Sirt1 could bind with Smad3. Resveratrol treatment enhanced this binding and reduced acetylation levels of Smad3. Resveratrol inhibited the transcription activity of Smad3. Knockdown of Sirt1 increased acetylated Smad3 and substantially enhanced the transcriptional activity following TGF‐β1. Finally, Sirt1 deficiency aggravated renal function damage and markedly enhanced fibrosis in the remnant kidney of 5/6 nephrectomized mice. Taken together, these results identify Sirt1 as an important protective factor for renal fibrosis in a CKD rodent model, and the protective function of Sirt1 is attributable to its action on TGF‐β/Smad3 signaling. Therefore, we suggest that Sirt1 may be a potential therapeutic target for the treatment of CKD. J. Cell. Biochem. 115: 996–1005, 2014. © 2014 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>24356887</pmid><doi>10.1002/jcb.24748</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-2312 |
ispartof | Journal of cellular biochemistry, 2014-05, Vol.115 (5), p.996-1005 |
issn | 0730-2312 1097-4644 |
language | eng |
recordid | cdi_proquest_miscellaneous_1504457319 |
source | Wiley |
subjects | Acetylation Animals Attenuation CHRONIC KIDNEY DISEASE FIBROSIS Fibrosis - genetics Fibrosis - pathology Humans Immunoprecipitation Kidney diseases Kidneys Mesangial cells Mice Pathogenesis Rats Renal function Renal Insufficiency, Chronic - chemically induced Renal Insufficiency, Chronic - drug therapy Renal Insufficiency, Chronic - genetics Renal Insufficiency, Chronic - pathology RESVERATROL Signal Transduction - genetics Sirt1 SIRT1 protein Sirtuin 1 - genetics Sirtuin 1 - metabolism Smad3 protein Smad3 Protein - genetics Smad3 Protein - metabolism Stilbenes - administration & dosage Stilbenes - toxicity Therapeutic targets Transcription factors Transforming Growth Factor beta1 - genetics Transforming Growth Factor beta1 - metabolism Transforming growth factor-b |
title | Sirt1 Activation Ameliorates Renal Fibrosis by Inhibiting the TGF-β/Smad3 Pathway |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A41%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sirt1%20Activation%20Ameliorates%20Renal%20Fibrosis%20by%20Inhibiting%20the%20TGF-%CE%B2/Smad3%20Pathway&rft.jtitle=Journal%20of%20cellular%20biochemistry&rft.au=Huang,%20Xin-Zhong&rft.date=2014-05&rft.volume=115&rft.issue=5&rft.spage=996&rft.epage=1005&rft.pages=996-1005&rft.issn=0730-2312&rft.eissn=1097-4644&rft_id=info:doi/10.1002/jcb.24748&rft_dat=%3Cproquest_cross%3E3041824601%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3918-f0400fadefec276207b7861cd34c29e81a2aafd0b16b709f2b8f7aafa9d0c9523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3041824601&rft_id=info:pmid/24356887&rfr_iscdi=true |