Loading…

CO2 isolated line shapes by classical molecular dynamics simulations: influence of the intermolecular potential and comparison with new measurements

Room temperature absorption spectra of various transitions of pure CO2 have been measured in a broad pressure range using a tunable diode-laser and a cavity ring-down spectrometer, respectively, in the 1.6 μm and 0.8 μm regions. Their spectral shapes have been calculated by requantized classical mol...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2014-02, Vol.140 (8), p.084308-084308
Main Authors: Larcher, G, Tran, H, Schwell, M, Chelin, P, Landsheere, X, Hartmann, J-M, Hu, S-M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Room temperature absorption spectra of various transitions of pure CO2 have been measured in a broad pressure range using a tunable diode-laser and a cavity ring-down spectrometer, respectively, in the 1.6 μm and 0.8 μm regions. Their spectral shapes have been calculated by requantized classical molecular dynamics simulations. From the time-dependent auto-correlation function of the molecular dipole, including Doppler and collisional effects, spectral shapes are directly computed without the use of any adjusted parameter. Analysis of the spectra calculated using three different anisotropic intermolecular potentials shows that the shapes of pure CO2 lines, in terms of both the Lorentz widths and non-Voigt effects, slightly depend on the used potential. Comparisons between these ab initio calculations and the measured spectra show satisfactory agreement for all considered transitions (from J = 6 to J = 46). They also show that non-Voigt effects on the shape of CO2 transitions are almost independent of the rotational quantum number of the considered lines.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4866449