Loading…
Profiling and Characterization of Sialylated N-glycans by 2D-HPLC (HIAX/PGC) with Online Orbitrap MS/MS and Offline MSn
Glycosylation is a critical parameter used to evaluate protein quality and consistency. N-linked glycan profiling is fundamental to the support of biotherapeutic protein manufacturing from early stage process development through drug product commercialization. Sialylated glycans impact the serum hal...
Saved in:
Published in: | Journal of pharmaceutical sciences 2014-02, Vol.103 (2), p.400-408 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Glycosylation is a critical parameter used to evaluate protein quality and consistency. N-linked glycan profiling is fundamental to the support of biotherapeutic protein manufacturing from early stage process development through drug product commercialization. Sialylated glycans impact the serum half-life of receptor–Fc fusion proteins (RFPs), making their quality and consistency a concern during the production of fusion proteins. Here, we describe an analytical approach providing both quantitative profiling and in-depth mass spectrometry (MS)-based structural characterization of sialylated RFP N-glycans. Aiming to efficiently link routine comparability studies with detailed structural characterization, an integrated workflow was implemented employing fluorescence detection, online positive and negative ion tandem mass spectrometry (MS/MS), and offline static nanospray ionization–sequential mass spectrometry (NSI–MSn). For routine use, high-performance liquid chromatography profiling employs established fluorescence detection of 2-aminobenzoic acid derivatives (2AA) and hydrophilic interaction anion-exchange chromatography (HIAX) charge class separation. Further characterization of HIAX peak fractions is achieved by online (−) ion orbitrap MS/MS, offering the advantages of high mass accuracy and data-dependent MS/MS. As required, additional characterization uses porous graphitized carbon in the second chromatographic dimension to provide orthogonal (+) ion MS/MS spectra and buffer-free liquid chromatography peak eluants that are optimum for offline (+)/(−) NSI–MSn investigations to characterize low-abundance species and specific moieties including O-acetylation and sulfation. |
---|---|
ISSN: | 0022-3549 1520-6017 |
DOI: | 10.1002/jps.23792 |