Loading…
In vitro and ex vivo methods predict the enhanced lung residence time of liposomal ciprofloxacin formulations for nebulisation
Liposomal ciprofloxacin formulations have been developed with the aim of enhancing lung residence time, thereby reducing the burden of inhaled antimicrobial therapy which requires multiple daily administration due to rapid absorptive clearance of antibiotics from the lungs. However, there is a lack...
Saved in:
Published in: | European journal of pharmaceutics and biopharmaceutics 2014-01, Vol.86 (1), p.83-89 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Liposomal ciprofloxacin formulations have been developed with the aim of enhancing lung residence time, thereby reducing the burden of inhaled antimicrobial therapy which requires multiple daily administration due to rapid absorptive clearance of antibiotics from the lungs. However, there is a lack of a predictive methodology available to assess controlled release inhalation delivery systems and their effect on drug disposition. In this study, three ciprofloxacin formulations were evaluated: a liposomal formulation, a solution formulation and a 1:1 combination of the two (mixture formulation). Different methodologies were utilised to study the release profiles of ciprofloxacin from these formulations: (i) membrane diffusion, (ii) air interface Calu-3 cells and (iii) isolated perfused rat lungs. The data from these models were compared to the performance of the formulations in vivo. The solution formulation provided the highest rate of absorptive transport followed by the mixture formulation, with the liposomal formulation providing substantially slower drug release. The rank order of drug release/transport from the different formulations was consistent across the in vitro andex vivo methods, and this was predictive of the profiles in vivo. The use of complimentary in vitro and ex vivo methodologies provided a robust analysis of formulation behaviour, including mechanistic insights, and predicted in vivo pharmacokinetics. |
---|---|
ISSN: | 0939-6411 1873-3441 |
DOI: | 10.1016/j.ejpb.2013.06.024 |