Loading…
Enhanced Oxygen Reduction Activity of IrCu Core Platinum Monolayer Shell Nano-electrocatalysts
Designing novel cathode materials for a proton exchange membrane fuel cell with high activity for the oxygen reduction reaction, low Pt loading, and enhanced long-term stability is imperative for its sustainability. To date, Pt monolayer based electrocatalysts deposited on a metallic core substrate...
Saved in:
Published in: | Topics in catalysis 2013-08, Vol.56 (12), p.1059-1064 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Designing novel cathode materials for a proton exchange membrane fuel cell with high activity for the oxygen reduction reaction, low Pt loading, and enhanced long-term stability is imperative for its sustainability. To date, Pt monolayer based electrocatalysts deposited on a metallic core substrate have shown promising possibilities. In this study, we synthesized bimetallic IrCu nanoparticles and used them as a core for Pt monolayer electrocatalysts. It was found that the de-alloyed IrCu nanoparticle surfaces increased both the mass and specific activities of the resulting Pt monolayer catalyst. In addition, we demonstrated that Pt monolayer electrocatalysts with a de-alloyed IrCu core have a better stability than those using a non-dealloyed core based on a 5,000 potential cycling test. These data describe a new simple synthesis of a high-performance catalyst suitable for practical applications. |
---|---|
ISSN: | 1022-5528 1572-9028 |
DOI: | 10.1007/s11244-013-0070-x |