Loading…
Curcumin Nanoparticles Attenuate Neurochemical and Neurobehavioral Deficits in Experimental Model of Huntington’s Disease
Till date, an exact causative pathway responsible for neurodegeneration in Huntington’s disease (HD) remains elusive; however, mitochondrial dysfunction appears to play an important role in HD pathogenesis. Therefore, strategies to attenuate mitochondrial impairments could provide a potential therap...
Saved in:
Published in: | Neuromolecular medicine 2014-03, Vol.16 (1), p.106-118 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Till date, an exact causative pathway responsible for neurodegeneration in Huntington’s disease (HD) remains elusive; however, mitochondrial dysfunction appears to play an important role in HD pathogenesis. Therefore, strategies to attenuate mitochondrial impairments could provide a potential therapeutic intervention. In the present study, we used curcumin encapsulated solid lipid nanoparticles (C-SLNs) to ameliorate 3-nitropropionic acid (3-NP)-induced HD in rats. Results of MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay and succinate dehydrogenase (SDH) staining of striatum revealed a marked decrease in Complex II activity. However, C-SLN-treated animals showed significant increase in the activity of mitochondrial complexes and cytochrome levels. C-SLNs also restored the glutathione levels and superoxide dismutase activity. Moreover, significant reduction in mitochondrial swelling, lipid peroxidation, protein carbonyls and reactive oxygen species was observed in rats treated with C-SLNs. Quantitative PCR and Western blot results revealed the activation of nuclear factor-erythroid 2 antioxidant pathway after C-SLNs administration in 3-NP-treated animals. In addition, C-SLN-treated rats showed significant improvement in neuromotor coordination when compared with 3-NP-treated rats. Thus, the results of this study suggest that C-SLNs administration might be a promising therapeutic intervention to ameliorate mitochondrial dysfunctions in HD. |
---|---|
ISSN: | 1535-1084 1559-1174 |
DOI: | 10.1007/s12017-013-8261-y |