Loading…

Predictive Thermal Inactivation Model for Effects and Interactions of Temperature, NaCl, Sodium Pyrophosphate, and Sodium Lactate on Listeria monocytogenes in Ground Beef

The effects and interactions of heating temperature (60 °C to 73.9 °C), salt (0.0 % to 4.5 %  w / v ), sodium pyrophosphate (0.0 % to 0.5 %  w / v ), and sodium lactate (0.0 % to 4.5 %  w / v ) on the heat resistance of a five-strain mixture of Listeria monocytogenes in 75 % lean ground beef were ex...

Full description

Saved in:
Bibliographic Details
Published in:Food and bioprocess technology 2014-02, Vol.7 (2), p.437-446
Main Authors: Juneja, Vijay, Mukhopadhyay, Sudarsan, Marks, Harry, Mohr, Tim B., Warning, Alex, Datta, Ashim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-2db185908f9d0a136f20f097690da534f7afdd4b52a3d1b437eb20a3b674a1593
cites cdi_FETCH-LOGICAL-c382t-2db185908f9d0a136f20f097690da534f7afdd4b52a3d1b437eb20a3b674a1593
container_end_page 446
container_issue 2
container_start_page 437
container_title Food and bioprocess technology
container_volume 7
creator Juneja, Vijay
Mukhopadhyay, Sudarsan
Marks, Harry
Mohr, Tim B.
Warning, Alex
Datta, Ashim
description The effects and interactions of heating temperature (60 °C to 73.9 °C), salt (0.0 % to 4.5 %  w / v ), sodium pyrophosphate (0.0 % to 0.5 %  w / v ), and sodium lactate (0.0 % to 4.5 %  w / v ) on the heat resistance of a five-strain mixture of Listeria monocytogenes in 75 % lean ground beef were examined. Meat samples in sterile filtered stomacher bags were heated in a temperature controlled waterbath to determine thermal death times. The recovery medium was tryptic soy agar supplemented with 0.6 % yeast extract and 1 % sodium pyruvate. Weibull survival functions were employed to model the primary survival curves. Then, survival curve-specific estimated parameter values obtained from the Weibull model were used for determining a secondary model. The results indicate that temperature and salt have a large impact on the inactivation kinetics of L. monocytogenes , while sodium lactate (NaL) has an impact in the presence of salt. The model presented in this paper for predicting inactivation of L. monocytogenes can be used as an aid in designing lethality treatments meant to control the presence of this pathogen in ready-to-eat products.
doi_str_mv 10.1007/s11947-013-1102-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1505329137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1505329137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-2db185908f9d0a136f20f097690da534f7afdd4b52a3d1b437eb20a3b674a1593</originalsourceid><addsrcrecordid>eNp1kdFqFDEUhgdRsFYfwLuAN150NCeZbHYudam1sLaFrtchMznppswkY5IpbB_JpzTDFgWhVwnnfN-fwF9V74F-Akrl5wTQNrKmwGsAyurHF9UJtFzUApr25d87p6-rNyndU7qiDfCT6vdNROP67B6Q7PYYRz2QS6-Xgc4uePIjGByIDZGcW4t9TkR7U5CMcaGCTyRYssNxKoM8RzwjV3oznJHbYNw8kptDDNM-pGmvc9kt8tNmW_wyI-WRrUslz2kyBh_6Qw536DER58lFDHNRviLat9Urq4eE757O0-rnt_Pd5nu9vb643HzZ1j1fs1wz08FatHRtW0M18JVl1NJWrlpqtOCNldoa03SCaW6ga7jEjlHNu5VsNIiWn1Yfj7lTDL9mTFmNLvU4DNpjmJMCQQVnLXBZ0A__ofdhjr78TrEGqJRCyiUQjlQfQ0oRrZqiG3U8KKBqaU8d21OlPbW0px6Lw45OKqy_w_gv-XnpD4hen00</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410775779</pqid></control><display><type>article</type><title>Predictive Thermal Inactivation Model for Effects and Interactions of Temperature, NaCl, Sodium Pyrophosphate, and Sodium Lactate on Listeria monocytogenes in Ground Beef</title><source>Springer Nature</source><creator>Juneja, Vijay ; Mukhopadhyay, Sudarsan ; Marks, Harry ; Mohr, Tim B. ; Warning, Alex ; Datta, Ashim</creator><creatorcontrib>Juneja, Vijay ; Mukhopadhyay, Sudarsan ; Marks, Harry ; Mohr, Tim B. ; Warning, Alex ; Datta, Ashim</creatorcontrib><description>The effects and interactions of heating temperature (60 °C to 73.9 °C), salt (0.0 % to 4.5 %  w / v ), sodium pyrophosphate (0.0 % to 0.5 %  w / v ), and sodium lactate (0.0 % to 4.5 %  w / v ) on the heat resistance of a five-strain mixture of Listeria monocytogenes in 75 % lean ground beef were examined. Meat samples in sterile filtered stomacher bags were heated in a temperature controlled waterbath to determine thermal death times. The recovery medium was tryptic soy agar supplemented with 0.6 % yeast extract and 1 % sodium pyruvate. Weibull survival functions were employed to model the primary survival curves. Then, survival curve-specific estimated parameter values obtained from the Weibull model were used for determining a secondary model. The results indicate that temperature and salt have a large impact on the inactivation kinetics of L. monocytogenes , while sodium lactate (NaL) has an impact in the presence of salt. The model presented in this paper for predicting inactivation of L. monocytogenes can be used as an aid in designing lethality treatments meant to control the presence of this pathogen in ready-to-eat products.</description><identifier>ISSN: 1935-5130</identifier><identifier>EISSN: 1935-5149</identifier><identifier>DOI: 10.1007/s11947-013-1102-z</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Agriculture ; Beef ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Deactivation ; Food Science ; Heat resistance ; Inactivation ; Lactic acid ; Lethality ; Listeria ; Listeria monocytogenes ; Meat ; Meat products ; Original Paper ; Parameter estimation ; Pyruvic acid ; Salts ; Sodium ; Sodium chloride ; Sodium lactate ; Sodium pyrophosphate ; Sodium pyruvate ; Survival ; Temperature control ; Thermal resistance ; Yeasts</subject><ispartof>Food and bioprocess technology, 2014-02, Vol.7 (2), p.437-446</ispartof><rights>Springer Science+Business Media New York (outside the USA) 2013</rights><rights>Springer Science+Business Media New York (outside the USA) 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-2db185908f9d0a136f20f097690da534f7afdd4b52a3d1b437eb20a3b674a1593</citedby><cites>FETCH-LOGICAL-c382t-2db185908f9d0a136f20f097690da534f7afdd4b52a3d1b437eb20a3b674a1593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Juneja, Vijay</creatorcontrib><creatorcontrib>Mukhopadhyay, Sudarsan</creatorcontrib><creatorcontrib>Marks, Harry</creatorcontrib><creatorcontrib>Mohr, Tim B.</creatorcontrib><creatorcontrib>Warning, Alex</creatorcontrib><creatorcontrib>Datta, Ashim</creatorcontrib><title>Predictive Thermal Inactivation Model for Effects and Interactions of Temperature, NaCl, Sodium Pyrophosphate, and Sodium Lactate on Listeria monocytogenes in Ground Beef</title><title>Food and bioprocess technology</title><addtitle>Food Bioprocess Technol</addtitle><description>The effects and interactions of heating temperature (60 °C to 73.9 °C), salt (0.0 % to 4.5 %  w / v ), sodium pyrophosphate (0.0 % to 0.5 %  w / v ), and sodium lactate (0.0 % to 4.5 %  w / v ) on the heat resistance of a five-strain mixture of Listeria monocytogenes in 75 % lean ground beef were examined. Meat samples in sterile filtered stomacher bags were heated in a temperature controlled waterbath to determine thermal death times. The recovery medium was tryptic soy agar supplemented with 0.6 % yeast extract and 1 % sodium pyruvate. Weibull survival functions were employed to model the primary survival curves. Then, survival curve-specific estimated parameter values obtained from the Weibull model were used for determining a secondary model. The results indicate that temperature and salt have a large impact on the inactivation kinetics of L. monocytogenes , while sodium lactate (NaL) has an impact in the presence of salt. The model presented in this paper for predicting inactivation of L. monocytogenes can be used as an aid in designing lethality treatments meant to control the presence of this pathogen in ready-to-eat products.</description><subject>Agriculture</subject><subject>Beef</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Deactivation</subject><subject>Food Science</subject><subject>Heat resistance</subject><subject>Inactivation</subject><subject>Lactic acid</subject><subject>Lethality</subject><subject>Listeria</subject><subject>Listeria monocytogenes</subject><subject>Meat</subject><subject>Meat products</subject><subject>Original Paper</subject><subject>Parameter estimation</subject><subject>Pyruvic acid</subject><subject>Salts</subject><subject>Sodium</subject><subject>Sodium chloride</subject><subject>Sodium lactate</subject><subject>Sodium pyrophosphate</subject><subject>Sodium pyruvate</subject><subject>Survival</subject><subject>Temperature control</subject><subject>Thermal resistance</subject><subject>Yeasts</subject><issn>1935-5130</issn><issn>1935-5149</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kdFqFDEUhgdRsFYfwLuAN150NCeZbHYudam1sLaFrtchMznppswkY5IpbB_JpzTDFgWhVwnnfN-fwF9V74F-Akrl5wTQNrKmwGsAyurHF9UJtFzUApr25d87p6-rNyndU7qiDfCT6vdNROP67B6Q7PYYRz2QS6-Xgc4uePIjGByIDZGcW4t9TkR7U5CMcaGCTyRYssNxKoM8RzwjV3oznJHbYNw8kptDDNM-pGmvc9kt8tNmW_wyI-WRrUslz2kyBh_6Qw536DER58lFDHNRviLat9Urq4eE757O0-rnt_Pd5nu9vb643HzZ1j1fs1wz08FatHRtW0M18JVl1NJWrlpqtOCNldoa03SCaW6ga7jEjlHNu5VsNIiWn1Yfj7lTDL9mTFmNLvU4DNpjmJMCQQVnLXBZ0A__ofdhjr78TrEGqJRCyiUQjlQfQ0oRrZqiG3U8KKBqaU8d21OlPbW0px6Lw45OKqy_w_gv-XnpD4hen00</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Juneja, Vijay</creator><creator>Mukhopadhyay, Sudarsan</creator><creator>Marks, Harry</creator><creator>Mohr, Tim B.</creator><creator>Warning, Alex</creator><creator>Datta, Ashim</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7QL</scope><scope>C1K</scope></search><sort><creationdate>20140201</creationdate><title>Predictive Thermal Inactivation Model for Effects and Interactions of Temperature, NaCl, Sodium Pyrophosphate, and Sodium Lactate on Listeria monocytogenes in Ground Beef</title><author>Juneja, Vijay ; Mukhopadhyay, Sudarsan ; Marks, Harry ; Mohr, Tim B. ; Warning, Alex ; Datta, Ashim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-2db185908f9d0a136f20f097690da534f7afdd4b52a3d1b437eb20a3b674a1593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Agriculture</topic><topic>Beef</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Deactivation</topic><topic>Food Science</topic><topic>Heat resistance</topic><topic>Inactivation</topic><topic>Lactic acid</topic><topic>Lethality</topic><topic>Listeria</topic><topic>Listeria monocytogenes</topic><topic>Meat</topic><topic>Meat products</topic><topic>Original Paper</topic><topic>Parameter estimation</topic><topic>Pyruvic acid</topic><topic>Salts</topic><topic>Sodium</topic><topic>Sodium chloride</topic><topic>Sodium lactate</topic><topic>Sodium pyrophosphate</topic><topic>Sodium pyruvate</topic><topic>Survival</topic><topic>Temperature control</topic><topic>Thermal resistance</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Juneja, Vijay</creatorcontrib><creatorcontrib>Mukhopadhyay, Sudarsan</creatorcontrib><creatorcontrib>Marks, Harry</creatorcontrib><creatorcontrib>Mohr, Tim B.</creatorcontrib><creatorcontrib>Warning, Alex</creatorcontrib><creatorcontrib>Datta, Ashim</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agriculture Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Food and bioprocess technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Juneja, Vijay</au><au>Mukhopadhyay, Sudarsan</au><au>Marks, Harry</au><au>Mohr, Tim B.</au><au>Warning, Alex</au><au>Datta, Ashim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive Thermal Inactivation Model for Effects and Interactions of Temperature, NaCl, Sodium Pyrophosphate, and Sodium Lactate on Listeria monocytogenes in Ground Beef</atitle><jtitle>Food and bioprocess technology</jtitle><stitle>Food Bioprocess Technol</stitle><date>2014-02-01</date><risdate>2014</risdate><volume>7</volume><issue>2</issue><spage>437</spage><epage>446</epage><pages>437-446</pages><issn>1935-5130</issn><eissn>1935-5149</eissn><abstract>The effects and interactions of heating temperature (60 °C to 73.9 °C), salt (0.0 % to 4.5 %  w / v ), sodium pyrophosphate (0.0 % to 0.5 %  w / v ), and sodium lactate (0.0 % to 4.5 %  w / v ) on the heat resistance of a five-strain mixture of Listeria monocytogenes in 75 % lean ground beef were examined. Meat samples in sterile filtered stomacher bags were heated in a temperature controlled waterbath to determine thermal death times. The recovery medium was tryptic soy agar supplemented with 0.6 % yeast extract and 1 % sodium pyruvate. Weibull survival functions were employed to model the primary survival curves. Then, survival curve-specific estimated parameter values obtained from the Weibull model were used for determining a secondary model. The results indicate that temperature and salt have a large impact on the inactivation kinetics of L. monocytogenes , while sodium lactate (NaL) has an impact in the presence of salt. The model presented in this paper for predicting inactivation of L. monocytogenes can be used as an aid in designing lethality treatments meant to control the presence of this pathogen in ready-to-eat products.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11947-013-1102-z</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1935-5130
ispartof Food and bioprocess technology, 2014-02, Vol.7 (2), p.437-446
issn 1935-5130
1935-5149
language eng
recordid cdi_proquest_miscellaneous_1505329137
source Springer Nature
subjects Agriculture
Beef
Biotechnology
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Deactivation
Food Science
Heat resistance
Inactivation
Lactic acid
Lethality
Listeria
Listeria monocytogenes
Meat
Meat products
Original Paper
Parameter estimation
Pyruvic acid
Salts
Sodium
Sodium chloride
Sodium lactate
Sodium pyrophosphate
Sodium pyruvate
Survival
Temperature control
Thermal resistance
Yeasts
title Predictive Thermal Inactivation Model for Effects and Interactions of Temperature, NaCl, Sodium Pyrophosphate, and Sodium Lactate on Listeria monocytogenes in Ground Beef
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20Thermal%20Inactivation%20Model%20for%20Effects%20and%20Interactions%20of%20Temperature,%20NaCl,%20Sodium%20Pyrophosphate,%20and%20Sodium%20Lactate%20on%20Listeria%20monocytogenes%20in%20Ground%20Beef&rft.jtitle=Food%20and%20bioprocess%20technology&rft.au=Juneja,%20Vijay&rft.date=2014-02-01&rft.volume=7&rft.issue=2&rft.spage=437&rft.epage=446&rft.pages=437-446&rft.issn=1935-5130&rft.eissn=1935-5149&rft_id=info:doi/10.1007/s11947-013-1102-z&rft_dat=%3Cproquest_cross%3E1505329137%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-2db185908f9d0a136f20f097690da534f7afdd4b52a3d1b437eb20a3b674a1593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2410775779&rft_id=info:pmid/&rfr_iscdi=true