Loading…
Predictive Thermal Inactivation Model for Effects and Interactions of Temperature, NaCl, Sodium Pyrophosphate, and Sodium Lactate on Listeria monocytogenes in Ground Beef
The effects and interactions of heating temperature (60 °C to 73.9 °C), salt (0.0 % to 4.5 % w / v ), sodium pyrophosphate (0.0 % to 0.5 % w / v ), and sodium lactate (0.0 % to 4.5 % w / v ) on the heat resistance of a five-strain mixture of Listeria monocytogenes in 75 % lean ground beef were ex...
Saved in:
Published in: | Food and bioprocess technology 2014-02, Vol.7 (2), p.437-446 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c382t-2db185908f9d0a136f20f097690da534f7afdd4b52a3d1b437eb20a3b674a1593 |
---|---|
cites | cdi_FETCH-LOGICAL-c382t-2db185908f9d0a136f20f097690da534f7afdd4b52a3d1b437eb20a3b674a1593 |
container_end_page | 446 |
container_issue | 2 |
container_start_page | 437 |
container_title | Food and bioprocess technology |
container_volume | 7 |
creator | Juneja, Vijay Mukhopadhyay, Sudarsan Marks, Harry Mohr, Tim B. Warning, Alex Datta, Ashim |
description | The effects and interactions of heating temperature (60 °C to 73.9 °C), salt (0.0 % to 4.5 %
w
/
v
), sodium pyrophosphate (0.0 % to 0.5 %
w
/
v
), and sodium lactate (0.0 % to 4.5 %
w
/
v
) on the heat resistance of a five-strain mixture of
Listeria monocytogenes
in 75 % lean ground beef were examined. Meat samples in sterile filtered stomacher bags were heated in a temperature controlled waterbath to determine thermal death times. The recovery medium was tryptic soy agar supplemented with 0.6 % yeast extract and 1 % sodium pyruvate. Weibull survival functions were employed to model the primary survival curves. Then, survival curve-specific estimated parameter values obtained from the Weibull model were used for determining a secondary model. The results indicate that temperature and salt have a large impact on the inactivation kinetics of
L. monocytogenes
, while sodium lactate (NaL) has an impact in the presence of salt. The model presented in this paper for predicting inactivation of
L. monocytogenes
can be used as an aid in designing lethality treatments meant to control the presence of this pathogen in ready-to-eat products. |
doi_str_mv | 10.1007/s11947-013-1102-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1505329137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1505329137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-2db185908f9d0a136f20f097690da534f7afdd4b52a3d1b437eb20a3b674a1593</originalsourceid><addsrcrecordid>eNp1kdFqFDEUhgdRsFYfwLuAN150NCeZbHYudam1sLaFrtchMznppswkY5IpbB_JpzTDFgWhVwnnfN-fwF9V74F-Akrl5wTQNrKmwGsAyurHF9UJtFzUApr25d87p6-rNyndU7qiDfCT6vdNROP67B6Q7PYYRz2QS6-Xgc4uePIjGByIDZGcW4t9TkR7U5CMcaGCTyRYssNxKoM8RzwjV3oznJHbYNw8kptDDNM-pGmvc9kt8tNmW_wyI-WRrUslz2kyBh_6Qw536DER58lFDHNRviLat9Urq4eE757O0-rnt_Pd5nu9vb643HzZ1j1fs1wz08FatHRtW0M18JVl1NJWrlpqtOCNldoa03SCaW6ga7jEjlHNu5VsNIiWn1Yfj7lTDL9mTFmNLvU4DNpjmJMCQQVnLXBZ0A__ofdhjr78TrEGqJRCyiUQjlQfQ0oRrZqiG3U8KKBqaU8d21OlPbW0px6Lw45OKqy_w_gv-XnpD4hen00</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410775779</pqid></control><display><type>article</type><title>Predictive Thermal Inactivation Model for Effects and Interactions of Temperature, NaCl, Sodium Pyrophosphate, and Sodium Lactate on Listeria monocytogenes in Ground Beef</title><source>Springer Nature</source><creator>Juneja, Vijay ; Mukhopadhyay, Sudarsan ; Marks, Harry ; Mohr, Tim B. ; Warning, Alex ; Datta, Ashim</creator><creatorcontrib>Juneja, Vijay ; Mukhopadhyay, Sudarsan ; Marks, Harry ; Mohr, Tim B. ; Warning, Alex ; Datta, Ashim</creatorcontrib><description>The effects and interactions of heating temperature (60 °C to 73.9 °C), salt (0.0 % to 4.5 %
w
/
v
), sodium pyrophosphate (0.0 % to 0.5 %
w
/
v
), and sodium lactate (0.0 % to 4.5 %
w
/
v
) on the heat resistance of a five-strain mixture of
Listeria monocytogenes
in 75 % lean ground beef were examined. Meat samples in sterile filtered stomacher bags were heated in a temperature controlled waterbath to determine thermal death times. The recovery medium was tryptic soy agar supplemented with 0.6 % yeast extract and 1 % sodium pyruvate. Weibull survival functions were employed to model the primary survival curves. Then, survival curve-specific estimated parameter values obtained from the Weibull model were used for determining a secondary model. The results indicate that temperature and salt have a large impact on the inactivation kinetics of
L. monocytogenes
, while sodium lactate (NaL) has an impact in the presence of salt. The model presented in this paper for predicting inactivation of
L. monocytogenes
can be used as an aid in designing lethality treatments meant to control the presence of this pathogen in ready-to-eat products.</description><identifier>ISSN: 1935-5130</identifier><identifier>EISSN: 1935-5149</identifier><identifier>DOI: 10.1007/s11947-013-1102-z</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Agriculture ; Beef ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Deactivation ; Food Science ; Heat resistance ; Inactivation ; Lactic acid ; Lethality ; Listeria ; Listeria monocytogenes ; Meat ; Meat products ; Original Paper ; Parameter estimation ; Pyruvic acid ; Salts ; Sodium ; Sodium chloride ; Sodium lactate ; Sodium pyrophosphate ; Sodium pyruvate ; Survival ; Temperature control ; Thermal resistance ; Yeasts</subject><ispartof>Food and bioprocess technology, 2014-02, Vol.7 (2), p.437-446</ispartof><rights>Springer Science+Business Media New York (outside the USA) 2013</rights><rights>Springer Science+Business Media New York (outside the USA) 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-2db185908f9d0a136f20f097690da534f7afdd4b52a3d1b437eb20a3b674a1593</citedby><cites>FETCH-LOGICAL-c382t-2db185908f9d0a136f20f097690da534f7afdd4b52a3d1b437eb20a3b674a1593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Juneja, Vijay</creatorcontrib><creatorcontrib>Mukhopadhyay, Sudarsan</creatorcontrib><creatorcontrib>Marks, Harry</creatorcontrib><creatorcontrib>Mohr, Tim B.</creatorcontrib><creatorcontrib>Warning, Alex</creatorcontrib><creatorcontrib>Datta, Ashim</creatorcontrib><title>Predictive Thermal Inactivation Model for Effects and Interactions of Temperature, NaCl, Sodium Pyrophosphate, and Sodium Lactate on Listeria monocytogenes in Ground Beef</title><title>Food and bioprocess technology</title><addtitle>Food Bioprocess Technol</addtitle><description>The effects and interactions of heating temperature (60 °C to 73.9 °C), salt (0.0 % to 4.5 %
w
/
v
), sodium pyrophosphate (0.0 % to 0.5 %
w
/
v
), and sodium lactate (0.0 % to 4.5 %
w
/
v
) on the heat resistance of a five-strain mixture of
Listeria monocytogenes
in 75 % lean ground beef were examined. Meat samples in sterile filtered stomacher bags were heated in a temperature controlled waterbath to determine thermal death times. The recovery medium was tryptic soy agar supplemented with 0.6 % yeast extract and 1 % sodium pyruvate. Weibull survival functions were employed to model the primary survival curves. Then, survival curve-specific estimated parameter values obtained from the Weibull model were used for determining a secondary model. The results indicate that temperature and salt have a large impact on the inactivation kinetics of
L. monocytogenes
, while sodium lactate (NaL) has an impact in the presence of salt. The model presented in this paper for predicting inactivation of
L. monocytogenes
can be used as an aid in designing lethality treatments meant to control the presence of this pathogen in ready-to-eat products.</description><subject>Agriculture</subject><subject>Beef</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Deactivation</subject><subject>Food Science</subject><subject>Heat resistance</subject><subject>Inactivation</subject><subject>Lactic acid</subject><subject>Lethality</subject><subject>Listeria</subject><subject>Listeria monocytogenes</subject><subject>Meat</subject><subject>Meat products</subject><subject>Original Paper</subject><subject>Parameter estimation</subject><subject>Pyruvic acid</subject><subject>Salts</subject><subject>Sodium</subject><subject>Sodium chloride</subject><subject>Sodium lactate</subject><subject>Sodium pyrophosphate</subject><subject>Sodium pyruvate</subject><subject>Survival</subject><subject>Temperature control</subject><subject>Thermal resistance</subject><subject>Yeasts</subject><issn>1935-5130</issn><issn>1935-5149</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kdFqFDEUhgdRsFYfwLuAN150NCeZbHYudam1sLaFrtchMznppswkY5IpbB_JpzTDFgWhVwnnfN-fwF9V74F-Akrl5wTQNrKmwGsAyurHF9UJtFzUApr25d87p6-rNyndU7qiDfCT6vdNROP67B6Q7PYYRz2QS6-Xgc4uePIjGByIDZGcW4t9TkR7U5CMcaGCTyRYssNxKoM8RzwjV3oznJHbYNw8kptDDNM-pGmvc9kt8tNmW_wyI-WRrUslz2kyBh_6Qw536DER58lFDHNRviLat9Urq4eE757O0-rnt_Pd5nu9vb643HzZ1j1fs1wz08FatHRtW0M18JVl1NJWrlpqtOCNldoa03SCaW6ga7jEjlHNu5VsNIiWn1Yfj7lTDL9mTFmNLvU4DNpjmJMCQQVnLXBZ0A__ofdhjr78TrEGqJRCyiUQjlQfQ0oRrZqiG3U8KKBqaU8d21OlPbW0px6Lw45OKqy_w_gv-XnpD4hen00</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Juneja, Vijay</creator><creator>Mukhopadhyay, Sudarsan</creator><creator>Marks, Harry</creator><creator>Mohr, Tim B.</creator><creator>Warning, Alex</creator><creator>Datta, Ashim</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7QL</scope><scope>C1K</scope></search><sort><creationdate>20140201</creationdate><title>Predictive Thermal Inactivation Model for Effects and Interactions of Temperature, NaCl, Sodium Pyrophosphate, and Sodium Lactate on Listeria monocytogenes in Ground Beef</title><author>Juneja, Vijay ; Mukhopadhyay, Sudarsan ; Marks, Harry ; Mohr, Tim B. ; Warning, Alex ; Datta, Ashim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-2db185908f9d0a136f20f097690da534f7afdd4b52a3d1b437eb20a3b674a1593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Agriculture</topic><topic>Beef</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Deactivation</topic><topic>Food Science</topic><topic>Heat resistance</topic><topic>Inactivation</topic><topic>Lactic acid</topic><topic>Lethality</topic><topic>Listeria</topic><topic>Listeria monocytogenes</topic><topic>Meat</topic><topic>Meat products</topic><topic>Original Paper</topic><topic>Parameter estimation</topic><topic>Pyruvic acid</topic><topic>Salts</topic><topic>Sodium</topic><topic>Sodium chloride</topic><topic>Sodium lactate</topic><topic>Sodium pyrophosphate</topic><topic>Sodium pyruvate</topic><topic>Survival</topic><topic>Temperature control</topic><topic>Thermal resistance</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Juneja, Vijay</creatorcontrib><creatorcontrib>Mukhopadhyay, Sudarsan</creatorcontrib><creatorcontrib>Marks, Harry</creatorcontrib><creatorcontrib>Mohr, Tim B.</creatorcontrib><creatorcontrib>Warning, Alex</creatorcontrib><creatorcontrib>Datta, Ashim</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agriculture Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Food and bioprocess technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Juneja, Vijay</au><au>Mukhopadhyay, Sudarsan</au><au>Marks, Harry</au><au>Mohr, Tim B.</au><au>Warning, Alex</au><au>Datta, Ashim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive Thermal Inactivation Model for Effects and Interactions of Temperature, NaCl, Sodium Pyrophosphate, and Sodium Lactate on Listeria monocytogenes in Ground Beef</atitle><jtitle>Food and bioprocess technology</jtitle><stitle>Food Bioprocess Technol</stitle><date>2014-02-01</date><risdate>2014</risdate><volume>7</volume><issue>2</issue><spage>437</spage><epage>446</epage><pages>437-446</pages><issn>1935-5130</issn><eissn>1935-5149</eissn><abstract>The effects and interactions of heating temperature (60 °C to 73.9 °C), salt (0.0 % to 4.5 %
w
/
v
), sodium pyrophosphate (0.0 % to 0.5 %
w
/
v
), and sodium lactate (0.0 % to 4.5 %
w
/
v
) on the heat resistance of a five-strain mixture of
Listeria monocytogenes
in 75 % lean ground beef were examined. Meat samples in sterile filtered stomacher bags were heated in a temperature controlled waterbath to determine thermal death times. The recovery medium was tryptic soy agar supplemented with 0.6 % yeast extract and 1 % sodium pyruvate. Weibull survival functions were employed to model the primary survival curves. Then, survival curve-specific estimated parameter values obtained from the Weibull model were used for determining a secondary model. The results indicate that temperature and salt have a large impact on the inactivation kinetics of
L. monocytogenes
, while sodium lactate (NaL) has an impact in the presence of salt. The model presented in this paper for predicting inactivation of
L. monocytogenes
can be used as an aid in designing lethality treatments meant to control the presence of this pathogen in ready-to-eat products.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11947-013-1102-z</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1935-5130 |
ispartof | Food and bioprocess technology, 2014-02, Vol.7 (2), p.437-446 |
issn | 1935-5130 1935-5149 |
language | eng |
recordid | cdi_proquest_miscellaneous_1505329137 |
source | Springer Nature |
subjects | Agriculture Beef Biotechnology Chemistry Chemistry and Materials Science Chemistry/Food Science Deactivation Food Science Heat resistance Inactivation Lactic acid Lethality Listeria Listeria monocytogenes Meat Meat products Original Paper Parameter estimation Pyruvic acid Salts Sodium Sodium chloride Sodium lactate Sodium pyrophosphate Sodium pyruvate Survival Temperature control Thermal resistance Yeasts |
title | Predictive Thermal Inactivation Model for Effects and Interactions of Temperature, NaCl, Sodium Pyrophosphate, and Sodium Lactate on Listeria monocytogenes in Ground Beef |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20Thermal%20Inactivation%20Model%20for%20Effects%20and%20Interactions%20of%20Temperature,%20NaCl,%20Sodium%20Pyrophosphate,%20and%20Sodium%20Lactate%20on%20Listeria%20monocytogenes%20in%20Ground%20Beef&rft.jtitle=Food%20and%20bioprocess%20technology&rft.au=Juneja,%20Vijay&rft.date=2014-02-01&rft.volume=7&rft.issue=2&rft.spage=437&rft.epage=446&rft.pages=437-446&rft.issn=1935-5130&rft.eissn=1935-5149&rft_id=info:doi/10.1007/s11947-013-1102-z&rft_dat=%3Cproquest_cross%3E1505329137%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-2db185908f9d0a136f20f097690da534f7afdd4b52a3d1b437eb20a3b674a1593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2410775779&rft_id=info:pmid/&rfr_iscdi=true |