Loading…

Posidonia oceanica genetic and biometry mapping through high-resolution satellite spectral vegetation indices and sea-truth calibration

In the framework of Posidonia oceanica (PO) preservation activities, a small-scale restoration pilot project was implemented in 2005 at a Santa Marinella site to replace the loss of this important species of seagrass in this zone of the central Tyrrhenian coast via an innovative transplantation appr...

Full description

Saved in:
Bibliographic Details
Published in:International journal of remote sensing 2013, Vol.34 (13), p.4680-4701
Main Authors: Borfecchia, Flavio, De Cecco, Luigi, Martini, Sandro, Ceriola, Giulio, Bollanos, Stelios, Vlachopoulos, George, Valiante, Luigi M, Belmonte, Alessandro, Micheli, Carla
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-bea0dee1726b77c39f2b2a5a860582f9d91b412f71d782b9ca409d9e0f46d06c3
cites cdi_FETCH-LOGICAL-c427t-bea0dee1726b77c39f2b2a5a860582f9d91b412f71d782b9ca409d9e0f46d06c3
container_end_page 4701
container_issue 13
container_start_page 4680
container_title International journal of remote sensing
container_volume 34
creator Borfecchia, Flavio
De Cecco, Luigi
Martini, Sandro
Ceriola, Giulio
Bollanos, Stelios
Vlachopoulos, George
Valiante, Luigi M
Belmonte, Alessandro
Micheli, Carla
description In the framework of Posidonia oceanica (PO) preservation activities, a small-scale restoration pilot project was implemented in 2005 at a Santa Marinella site to replace the loss of this important species of seagrass in this zone of the central Tyrrhenian coast via an innovative transplantation approach. In this context, taking into account the recent advances in the fields of high-resolution (HR) satellite/airborne remote-sensing and genetics laboratory analysis techniques, we propose this integrated methodology for monitoring changes in transplanted meadows in regard to perspective to provide support in the assessment of the entire local PO and seagrass population dynamic. According to specific information requirements in terms of radiometric and spectral/spatial resolution, the multispectral data currently available from the QuickBird polar satellite’s four-band (red, green, blue visible and near-infrared) HR sensor were exploited for methodology implementation using a practical ‘image-based’ approach to account for atmospheric and water column turbidity typical of this mid-coastal Mediterranean region. First, the extents and types of seagrass cover were suitably mapped, and then also the distributions of specific vegetation parameters related to PO dynamics and health were assessed by exploiting the remotely sensed satellite-derived radiance signals and point sea-truth calibration measurements of the bio-genetic parameters. In particular, we implemented maps of leaf area index, genetic similarity, and density Giraud indices corresponding to distributions of PO patches using multivariate and data-mining models (artificial neural network) based on appropriately preprocessed radiometric and auxiliary (bathymetry) input variables.
doi_str_mv 10.1080/01431161.2013.781701
format article
fullrecord <record><control><sourceid>proquest_fao_a</sourceid><recordid>TN_cdi_proquest_miscellaneous_1505330662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642251685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-bea0dee1726b77c39f2b2a5a860582f9d91b412f71d782b9ca409d9e0f46d06c3</originalsourceid><addsrcrecordid>eNqFkcGK1jAUhYsoOI6-gWA2gpv-3iRt0q5EBh2FAQWddbhNb9tI29QkHfmfwNeezt8ZcTerhNzvnHPJybLXHA4cKngPvJCcK34QwOVBV1wDf5KdcalUXtbAn_53f569iPEXAChd6rPs73cfXetnh8xbwtlZZD3NlJxlOLescX6iFI5swmVxc8_SEPzaD2xw_ZAHin5ck_Mzi5hoHF0iFheyKeDIbqinhKepm1tnKZ4sI2GewpoGZnF0TTgRL7NnHY6RXt2f59n1508_L77kV98uv158vMptIXTKG0JoibgWqtHayroTjcASKwVlJbq6rXlTcNFp3upKNLXFArZHgq5QLSgrz7N3u-8S_O-VYjKTi3bbHGfyazRcFUKUXFXl42gJpZSglNjQYkdt8DEG6swS3IThaDiYu4rMQ0XmriKzV7TJ3t4nYNz-ogs4Wxf_aYWWSlZabtyHnXNz58OEf3wYW5PwOPrwIJKPJL3ZHTr0BvuwCa5_bEABwCshy1reAuTisJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1505330662</pqid></control><display><type>article</type><title>Posidonia oceanica genetic and biometry mapping through high-resolution satellite spectral vegetation indices and sea-truth calibration</title><source>Taylor and Francis Science and Technology Collection</source><creator>Borfecchia, Flavio ; De Cecco, Luigi ; Martini, Sandro ; Ceriola, Giulio ; Bollanos, Stelios ; Vlachopoulos, George ; Valiante, Luigi M ; Belmonte, Alessandro ; Micheli, Carla</creator><creatorcontrib>Borfecchia, Flavio ; De Cecco, Luigi ; Martini, Sandro ; Ceriola, Giulio ; Bollanos, Stelios ; Vlachopoulos, George ; Valiante, Luigi M ; Belmonte, Alessandro ; Micheli, Carla</creatorcontrib><description>In the framework of Posidonia oceanica (PO) preservation activities, a small-scale restoration pilot project was implemented in 2005 at a Santa Marinella site to replace the loss of this important species of seagrass in this zone of the central Tyrrhenian coast via an innovative transplantation approach. In this context, taking into account the recent advances in the fields of high-resolution (HR) satellite/airborne remote-sensing and genetics laboratory analysis techniques, we propose this integrated methodology for monitoring changes in transplanted meadows in regard to perspective to provide support in the assessment of the entire local PO and seagrass population dynamic. According to specific information requirements in terms of radiometric and spectral/spatial resolution, the multispectral data currently available from the QuickBird polar satellite’s four-band (red, green, blue visible and near-infrared) HR sensor were exploited for methodology implementation using a practical ‘image-based’ approach to account for atmospheric and water column turbidity typical of this mid-coastal Mediterranean region. First, the extents and types of seagrass cover were suitably mapped, and then also the distributions of specific vegetation parameters related to PO dynamics and health were assessed by exploiting the remotely sensed satellite-derived radiance signals and point sea-truth calibration measurements of the bio-genetic parameters. In particular, we implemented maps of leaf area index, genetic similarity, and density Giraud indices corresponding to distributions of PO patches using multivariate and data-mining models (artificial neural network) based on appropriately preprocessed radiometric and auxiliary (bathymetry) input variables.</description><identifier>ISSN: 1366-5901</identifier><identifier>ISSN: 0143-1161</identifier><identifier>EISSN: 1366-5901</identifier><identifier>DOI: 10.1080/01431161.2013.781701</identifier><identifier>CODEN: IJSEDK</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Animal, plant and microbial ecology ; Applied geophysics ; Biological and medical sciences ; biometry ; Dynamic tests ; Dynamics ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; genetic techniques and protocols ; Genetics ; Internal geophysics ; leaf area index ; Marine ; Mathematical models ; meadows ; Methodology ; monitoring ; neural networks ; plant genetics ; Posidonia oceanica ; radiometry ; remote sensing ; Satellites ; seagrasses ; Spectra ; spectral analysis ; Teledetection and vegetation maps ; turbidity ; Vegetation</subject><ispartof>International journal of remote sensing, 2013, Vol.34 (13), p.4680-4701</ispartof><rights>Copyright Taylor &amp; Francis 2013</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-bea0dee1726b77c39f2b2a5a860582f9d91b412f71d782b9ca409d9e0f46d06c3</citedby><cites>FETCH-LOGICAL-c427t-bea0dee1726b77c39f2b2a5a860582f9d91b412f71d782b9ca409d9e0f46d06c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27363873$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Borfecchia, Flavio</creatorcontrib><creatorcontrib>De Cecco, Luigi</creatorcontrib><creatorcontrib>Martini, Sandro</creatorcontrib><creatorcontrib>Ceriola, Giulio</creatorcontrib><creatorcontrib>Bollanos, Stelios</creatorcontrib><creatorcontrib>Vlachopoulos, George</creatorcontrib><creatorcontrib>Valiante, Luigi M</creatorcontrib><creatorcontrib>Belmonte, Alessandro</creatorcontrib><creatorcontrib>Micheli, Carla</creatorcontrib><title>Posidonia oceanica genetic and biometry mapping through high-resolution satellite spectral vegetation indices and sea-truth calibration</title><title>International journal of remote sensing</title><description>In the framework of Posidonia oceanica (PO) preservation activities, a small-scale restoration pilot project was implemented in 2005 at a Santa Marinella site to replace the loss of this important species of seagrass in this zone of the central Tyrrhenian coast via an innovative transplantation approach. In this context, taking into account the recent advances in the fields of high-resolution (HR) satellite/airborne remote-sensing and genetics laboratory analysis techniques, we propose this integrated methodology for monitoring changes in transplanted meadows in regard to perspective to provide support in the assessment of the entire local PO and seagrass population dynamic. According to specific information requirements in terms of radiometric and spectral/spatial resolution, the multispectral data currently available from the QuickBird polar satellite’s four-band (red, green, blue visible and near-infrared) HR sensor were exploited for methodology implementation using a practical ‘image-based’ approach to account for atmospheric and water column turbidity typical of this mid-coastal Mediterranean region. First, the extents and types of seagrass cover were suitably mapped, and then also the distributions of specific vegetation parameters related to PO dynamics and health were assessed by exploiting the remotely sensed satellite-derived radiance signals and point sea-truth calibration measurements of the bio-genetic parameters. In particular, we implemented maps of leaf area index, genetic similarity, and density Giraud indices corresponding to distributions of PO patches using multivariate and data-mining models (artificial neural network) based on appropriately preprocessed radiometric and auxiliary (bathymetry) input variables.</description><subject>Animal, plant and microbial ecology</subject><subject>Applied geophysics</subject><subject>Biological and medical sciences</subject><subject>biometry</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>genetic techniques and protocols</subject><subject>Genetics</subject><subject>Internal geophysics</subject><subject>leaf area index</subject><subject>Marine</subject><subject>Mathematical models</subject><subject>meadows</subject><subject>Methodology</subject><subject>monitoring</subject><subject>neural networks</subject><subject>plant genetics</subject><subject>Posidonia oceanica</subject><subject>radiometry</subject><subject>remote sensing</subject><subject>Satellites</subject><subject>seagrasses</subject><subject>Spectra</subject><subject>spectral analysis</subject><subject>Teledetection and vegetation maps</subject><subject>turbidity</subject><subject>Vegetation</subject><issn>1366-5901</issn><issn>0143-1161</issn><issn>1366-5901</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkcGK1jAUhYsoOI6-gWA2gpv-3iRt0q5EBh2FAQWddbhNb9tI29QkHfmfwNeezt8ZcTerhNzvnHPJybLXHA4cKngPvJCcK34QwOVBV1wDf5KdcalUXtbAn_53f569iPEXAChd6rPs73cfXetnh8xbwtlZZD3NlJxlOLescX6iFI5swmVxc8_SEPzaD2xw_ZAHin5ck_Mzi5hoHF0iFheyKeDIbqinhKepm1tnKZ4sI2GewpoGZnF0TTgRL7NnHY6RXt2f59n1508_L77kV98uv158vMptIXTKG0JoibgWqtHayroTjcASKwVlJbq6rXlTcNFp3upKNLXFArZHgq5QLSgrz7N3u-8S_O-VYjKTi3bbHGfyazRcFUKUXFXl42gJpZSglNjQYkdt8DEG6swS3IThaDiYu4rMQ0XmriKzV7TJ3t4nYNz-ogs4Wxf_aYWWSlZabtyHnXNz58OEf3wYW5PwOPrwIJKPJL3ZHTr0BvuwCa5_bEABwCshy1reAuTisJw</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Borfecchia, Flavio</creator><creator>De Cecco, Luigi</creator><creator>Martini, Sandro</creator><creator>Ceriola, Giulio</creator><creator>Bollanos, Stelios</creator><creator>Vlachopoulos, George</creator><creator>Valiante, Luigi M</creator><creator>Belmonte, Alessandro</creator><creator>Micheli, Carla</creator><general>Taylor &amp; Francis</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>P64</scope><scope>RC3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>2013</creationdate><title>Posidonia oceanica genetic and biometry mapping through high-resolution satellite spectral vegetation indices and sea-truth calibration</title><author>Borfecchia, Flavio ; De Cecco, Luigi ; Martini, Sandro ; Ceriola, Giulio ; Bollanos, Stelios ; Vlachopoulos, George ; Valiante, Luigi M ; Belmonte, Alessandro ; Micheli, Carla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-bea0dee1726b77c39f2b2a5a860582f9d91b412f71d782b9ca409d9e0f46d06c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Applied geophysics</topic><topic>Biological and medical sciences</topic><topic>biometry</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>genetic techniques and protocols</topic><topic>Genetics</topic><topic>Internal geophysics</topic><topic>leaf area index</topic><topic>Marine</topic><topic>Mathematical models</topic><topic>meadows</topic><topic>Methodology</topic><topic>monitoring</topic><topic>neural networks</topic><topic>plant genetics</topic><topic>Posidonia oceanica</topic><topic>radiometry</topic><topic>remote sensing</topic><topic>Satellites</topic><topic>seagrasses</topic><topic>Spectra</topic><topic>spectral analysis</topic><topic>Teledetection and vegetation maps</topic><topic>turbidity</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borfecchia, Flavio</creatorcontrib><creatorcontrib>De Cecco, Luigi</creatorcontrib><creatorcontrib>Martini, Sandro</creatorcontrib><creatorcontrib>Ceriola, Giulio</creatorcontrib><creatorcontrib>Bollanos, Stelios</creatorcontrib><creatorcontrib>Vlachopoulos, George</creatorcontrib><creatorcontrib>Valiante, Luigi M</creatorcontrib><creatorcontrib>Belmonte, Alessandro</creatorcontrib><creatorcontrib>Micheli, Carla</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borfecchia, Flavio</au><au>De Cecco, Luigi</au><au>Martini, Sandro</au><au>Ceriola, Giulio</au><au>Bollanos, Stelios</au><au>Vlachopoulos, George</au><au>Valiante, Luigi M</au><au>Belmonte, Alessandro</au><au>Micheli, Carla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Posidonia oceanica genetic and biometry mapping through high-resolution satellite spectral vegetation indices and sea-truth calibration</atitle><jtitle>International journal of remote sensing</jtitle><date>2013</date><risdate>2013</risdate><volume>34</volume><issue>13</issue><spage>4680</spage><epage>4701</epage><pages>4680-4701</pages><issn>1366-5901</issn><issn>0143-1161</issn><eissn>1366-5901</eissn><coden>IJSEDK</coden><abstract>In the framework of Posidonia oceanica (PO) preservation activities, a small-scale restoration pilot project was implemented in 2005 at a Santa Marinella site to replace the loss of this important species of seagrass in this zone of the central Tyrrhenian coast via an innovative transplantation approach. In this context, taking into account the recent advances in the fields of high-resolution (HR) satellite/airborne remote-sensing and genetics laboratory analysis techniques, we propose this integrated methodology for monitoring changes in transplanted meadows in regard to perspective to provide support in the assessment of the entire local PO and seagrass population dynamic. According to specific information requirements in terms of radiometric and spectral/spatial resolution, the multispectral data currently available from the QuickBird polar satellite’s four-band (red, green, blue visible and near-infrared) HR sensor were exploited for methodology implementation using a practical ‘image-based’ approach to account for atmospheric and water column turbidity typical of this mid-coastal Mediterranean region. First, the extents and types of seagrass cover were suitably mapped, and then also the distributions of specific vegetation parameters related to PO dynamics and health were assessed by exploiting the remotely sensed satellite-derived radiance signals and point sea-truth calibration measurements of the bio-genetic parameters. In particular, we implemented maps of leaf area index, genetic similarity, and density Giraud indices corresponding to distributions of PO patches using multivariate and data-mining models (artificial neural network) based on appropriately preprocessed radiometric and auxiliary (bathymetry) input variables.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/01431161.2013.781701</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1366-5901
ispartof International journal of remote sensing, 2013, Vol.34 (13), p.4680-4701
issn 1366-5901
0143-1161
1366-5901
language eng
recordid cdi_proquest_miscellaneous_1505330662
source Taylor and Francis Science and Technology Collection
subjects Animal, plant and microbial ecology
Applied geophysics
Biological and medical sciences
biometry
Dynamic tests
Dynamics
Earth sciences
Earth, ocean, space
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
genetic techniques and protocols
Genetics
Internal geophysics
leaf area index
Marine
Mathematical models
meadows
Methodology
monitoring
neural networks
plant genetics
Posidonia oceanica
radiometry
remote sensing
Satellites
seagrasses
Spectra
spectral analysis
Teledetection and vegetation maps
turbidity
Vegetation
title Posidonia oceanica genetic and biometry mapping through high-resolution satellite spectral vegetation indices and sea-truth calibration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Posidonia%20oceanica%20genetic%20and%20biometry%20mapping%20through%20high-resolution%20satellite%20spectral%20vegetation%20indices%20and%20sea-truth%20calibration&rft.jtitle=International%20journal%20of%20remote%20sensing&rft.au=Borfecchia,%20Flavio&rft.date=2013&rft.volume=34&rft.issue=13&rft.spage=4680&rft.epage=4701&rft.pages=4680-4701&rft.issn=1366-5901&rft.eissn=1366-5901&rft.coden=IJSEDK&rft_id=info:doi/10.1080/01431161.2013.781701&rft_dat=%3Cproquest_fao_a%3E1642251685%3C/proquest_fao_a%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-bea0dee1726b77c39f2b2a5a860582f9d91b412f71d782b9ca409d9e0f46d06c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1505330662&rft_id=info:pmid/&rfr_iscdi=true