Loading…

influence of symbiont type on photosynthetic carbon flux in a model cnidarian–dinoflagellate symbiosis

We measured the relationship between symbiont diversity, nutritional potential, and symbiotic success in the cnidarian–dinoflagellate symbiosis, by infecting aposymbiotic (i.e. symbiont-free) specimens of the model sea anemone Aiptasia sp. with a range of Symbiodinium types. Four cultured heterologo...

Full description

Saved in:
Bibliographic Details
Published in:Marine biology 2014-03, Vol.161 (3), p.711-724
Main Authors: Starzak, Dorota E, Quinnell, Rosanne G, Nitschke, Matthew R, Davy, Simon K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c508t-e4cc234230f3a2ab895b65a0d6dfa52616ea4cd938387c1f4aa16a4f4b65fc943
cites cdi_FETCH-LOGICAL-c508t-e4cc234230f3a2ab895b65a0d6dfa52616ea4cd938387c1f4aa16a4f4b65fc943
container_end_page 724
container_issue 3
container_start_page 711
container_title Marine biology
container_volume 161
creator Starzak, Dorota E
Quinnell, Rosanne G
Nitschke, Matthew R
Davy, Simon K
description We measured the relationship between symbiont diversity, nutritional potential, and symbiotic success in the cnidarian–dinoflagellate symbiosis, by infecting aposymbiotic (i.e. symbiont-free) specimens of the model sea anemone Aiptasia sp. with a range of Symbiodinium types. Four cultured heterologous Symbiodinium types (i.e. originally isolated from other host species) were used, plus both cultured and freshly isolated homologous zooxanthellae (i.e. from Aiptasia sp.). Rates of photosynthesis, respiration, and symbiont growth were measured during symbiosis establishment and used to estimate the contribution of the zooxanthellae to the animal’s respiratory carbon demands (CZAR). Anemones containing Symbiodinium B1 (both homologous and heterologous) tended to attain higher CZAR values and hence benefit most from their symbiotic partners. This was despite Symbiodinium B1 not achieving the highest cell densities, though it did grow more quickly during the earliest stages of the infection process. Rather, the heterologous Symbiodinium types A1.4, E2, and F5.1 attained the highest densities, with populations of E2 and F5.1 also exhibiting the highest photosynthetic rates. This apparent success was countered, however, by very high rates of symbiosis respiration that ultimately resulted in lower CZAR values. This study highlights the impact of symbiont type on the functionality and autotrophic potential of the symbiosis. Most interestingly, it suggests that certain heterologous symbionts may behave opportunistically, proliferating rapidly but in a manner that is energetically costly to the host. Such negative host–symbiont interactions may contribute to the host–symbiont specificity seen in cnidarian–dinoflagellate symbioses and potentially limit the potential for partner switching as an adaptive mechanism.
doi_str_mv 10.1007/s00227-013-2372-8
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1505332647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A365070731</galeid><sourcerecordid>A365070731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-e4cc234230f3a2ab895b65a0d6dfa52616ea4cd938387c1f4aa16a4f4b65fc943</originalsourceid><addsrcrecordid>eNp9ksuKFDEUhgtRsB19AFcWiOCmxpN71XIYvMGAC511OJ1KqjNUJW1SDfZu3sE39ElMUY03Gski5Jzv_zk5_FX1nMAlAVBvMgClqgHCGsoUbdoH1YZwRhuiOvaw2pS2aBiR9HH1JOc7KG9F2aba-eDGgw3G1tHV-ThtfQxzPR_3pRDq_S7OMR_DvLOzN7XBtC3VovhW-1BjPcXejrUJvsfkMfy4_977EN2Igx1HnO3JMfv8tHrkcMz22em-qG7fvf1y_aG5-fT-4_XVTWMEtHNjuTGUccrAMaS4bTuxlQKhl71DQSWRFrnpO9ayVhniOCKRyB0vlDMdZxfV69V3n-LXg82znnw2yzTBxkPWRIBgjEquCvryH_QuHlIo0y0UdNBKRX5TA45Wl3XFOaFZTPUVkwIUKLZQzRlqsMEmHGOwzpfyX_zlGb6c3k7enBWQVWBSzDlZp_fJT5iOmoBeIqDXCOgSAb1EQLdF8-r0QcwGR5cwGJ9_CWkrOsm4KBxduVxaYbDpj0X8x_zFKnIYNQ6pGN9-pkA4AKGc0pb9BPTZyZk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1500908671</pqid></control><display><type>article</type><title>influence of symbiont type on photosynthetic carbon flux in a model cnidarian–dinoflagellate symbiosis</title><source>Springer Nature</source><creator>Starzak, Dorota E ; Quinnell, Rosanne G ; Nitschke, Matthew R ; Davy, Simon K</creator><creatorcontrib>Starzak, Dorota E ; Quinnell, Rosanne G ; Nitschke, Matthew R ; Davy, Simon K</creatorcontrib><description>We measured the relationship between symbiont diversity, nutritional potential, and symbiotic success in the cnidarian–dinoflagellate symbiosis, by infecting aposymbiotic (i.e. symbiont-free) specimens of the model sea anemone Aiptasia sp. with a range of Symbiodinium types. Four cultured heterologous Symbiodinium types (i.e. originally isolated from other host species) were used, plus both cultured and freshly isolated homologous zooxanthellae (i.e. from Aiptasia sp.). Rates of photosynthesis, respiration, and symbiont growth were measured during symbiosis establishment and used to estimate the contribution of the zooxanthellae to the animal’s respiratory carbon demands (CZAR). Anemones containing Symbiodinium B1 (both homologous and heterologous) tended to attain higher CZAR values and hence benefit most from their symbiotic partners. This was despite Symbiodinium B1 not achieving the highest cell densities, though it did grow more quickly during the earliest stages of the infection process. Rather, the heterologous Symbiodinium types A1.4, E2, and F5.1 attained the highest densities, with populations of E2 and F5.1 also exhibiting the highest photosynthetic rates. This apparent success was countered, however, by very high rates of symbiosis respiration that ultimately resulted in lower CZAR values. This study highlights the impact of symbiont type on the functionality and autotrophic potential of the symbiosis. Most interestingly, it suggests that certain heterologous symbionts may behave opportunistically, proliferating rapidly but in a manner that is energetically costly to the host. Such negative host–symbiont interactions may contribute to the host–symbiont specificity seen in cnidarian–dinoflagellate symbioses and potentially limit the potential for partner switching as an adaptive mechanism.</description><identifier>ISSN: 0025-3162</identifier><identifier>EISSN: 1432-1793</identifier><identifier>DOI: 10.1007/s00227-013-2372-8</identifier><identifier>CODEN: MBIOAJ</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Aiptasia ; Animal and plant ecology ; Animal, plant and microbial ecology ; Aquatic life ; Biological and medical sciences ; Biomedical and Life Sciences ; Carbon ; Cnidaria. Ctenaria ; Coelenterata ; dietary nutrient sources ; Dinoflagellates ; Environment ; Environmental aspects ; Freshwater &amp; Marine Ecology ; Fundamental and applied biological sciences. Psychology ; Invertebrates ; Life Sciences ; Marine ; Marine &amp; Freshwater Sciences ; Marine biology ; Microbiology ; Oceanography ; Original Paper ; Photosynthesis ; Respiration ; Sea water ecosystems ; Symbiodinium ; symbionts ; Symbiosis ; Synecology ; Zoology</subject><ispartof>Marine biology, 2014-03, Vol.161 (3), p.711-724</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2014 Springer</rights><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-e4cc234230f3a2ab895b65a0d6dfa52616ea4cd938387c1f4aa16a4f4b65fc943</citedby><cites>FETCH-LOGICAL-c508t-e4cc234230f3a2ab895b65a0d6dfa52616ea4cd938387c1f4aa16a4f4b65fc943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28596345$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Starzak, Dorota E</creatorcontrib><creatorcontrib>Quinnell, Rosanne G</creatorcontrib><creatorcontrib>Nitschke, Matthew R</creatorcontrib><creatorcontrib>Davy, Simon K</creatorcontrib><title>influence of symbiont type on photosynthetic carbon flux in a model cnidarian–dinoflagellate symbiosis</title><title>Marine biology</title><addtitle>Mar Biol</addtitle><description>We measured the relationship between symbiont diversity, nutritional potential, and symbiotic success in the cnidarian–dinoflagellate symbiosis, by infecting aposymbiotic (i.e. symbiont-free) specimens of the model sea anemone Aiptasia sp. with a range of Symbiodinium types. Four cultured heterologous Symbiodinium types (i.e. originally isolated from other host species) were used, plus both cultured and freshly isolated homologous zooxanthellae (i.e. from Aiptasia sp.). Rates of photosynthesis, respiration, and symbiont growth were measured during symbiosis establishment and used to estimate the contribution of the zooxanthellae to the animal’s respiratory carbon demands (CZAR). Anemones containing Symbiodinium B1 (both homologous and heterologous) tended to attain higher CZAR values and hence benefit most from their symbiotic partners. This was despite Symbiodinium B1 not achieving the highest cell densities, though it did grow more quickly during the earliest stages of the infection process. Rather, the heterologous Symbiodinium types A1.4, E2, and F5.1 attained the highest densities, with populations of E2 and F5.1 also exhibiting the highest photosynthetic rates. This apparent success was countered, however, by very high rates of symbiosis respiration that ultimately resulted in lower CZAR values. This study highlights the impact of symbiont type on the functionality and autotrophic potential of the symbiosis. Most interestingly, it suggests that certain heterologous symbionts may behave opportunistically, proliferating rapidly but in a manner that is energetically costly to the host. Such negative host–symbiont interactions may contribute to the host–symbiont specificity seen in cnidarian–dinoflagellate symbioses and potentially limit the potential for partner switching as an adaptive mechanism.</description><subject>Aiptasia</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Aquatic life</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon</subject><subject>Cnidaria. Ctenaria</subject><subject>Coelenterata</subject><subject>dietary nutrient sources</subject><subject>Dinoflagellates</subject><subject>Environment</subject><subject>Environmental aspects</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Invertebrates</subject><subject>Life Sciences</subject><subject>Marine</subject><subject>Marine &amp; Freshwater Sciences</subject><subject>Marine biology</subject><subject>Microbiology</subject><subject>Oceanography</subject><subject>Original Paper</subject><subject>Photosynthesis</subject><subject>Respiration</subject><subject>Sea water ecosystems</subject><subject>Symbiodinium</subject><subject>symbionts</subject><subject>Symbiosis</subject><subject>Synecology</subject><subject>Zoology</subject><issn>0025-3162</issn><issn>1432-1793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9ksuKFDEUhgtRsB19AFcWiOCmxpN71XIYvMGAC511OJ1KqjNUJW1SDfZu3sE39ElMUY03Gski5Jzv_zk5_FX1nMAlAVBvMgClqgHCGsoUbdoH1YZwRhuiOvaw2pS2aBiR9HH1JOc7KG9F2aba-eDGgw3G1tHV-ThtfQxzPR_3pRDq_S7OMR_DvLOzN7XBtC3VovhW-1BjPcXejrUJvsfkMfy4_977EN2Igx1HnO3JMfv8tHrkcMz22em-qG7fvf1y_aG5-fT-4_XVTWMEtHNjuTGUccrAMaS4bTuxlQKhl71DQSWRFrnpO9ayVhniOCKRyB0vlDMdZxfV69V3n-LXg82znnw2yzTBxkPWRIBgjEquCvryH_QuHlIo0y0UdNBKRX5TA45Wl3XFOaFZTPUVkwIUKLZQzRlqsMEmHGOwzpfyX_zlGb6c3k7enBWQVWBSzDlZp_fJT5iOmoBeIqDXCOgSAb1EQLdF8-r0QcwGR5cwGJ9_CWkrOsm4KBxduVxaYbDpj0X8x_zFKnIYNQ6pGN9-pkA4AKGc0pb9BPTZyZk</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Starzak, Dorota E</creator><creator>Quinnell, Rosanne G</creator><creator>Nitschke, Matthew R</creator><creator>Davy, Simon K</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7SN</scope><scope>7ST</scope><scope>7TN</scope><scope>7U7</scope><scope>7XB</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>20140301</creationdate><title>influence of symbiont type on photosynthetic carbon flux in a model cnidarian–dinoflagellate symbiosis</title><author>Starzak, Dorota E ; Quinnell, Rosanne G ; Nitschke, Matthew R ; Davy, Simon K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-e4cc234230f3a2ab895b65a0d6dfa52616ea4cd938387c1f4aa16a4f4b65fc943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aiptasia</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Aquatic life</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon</topic><topic>Cnidaria. Ctenaria</topic><topic>Coelenterata</topic><topic>dietary nutrient sources</topic><topic>Dinoflagellates</topic><topic>Environment</topic><topic>Environmental aspects</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Invertebrates</topic><topic>Life Sciences</topic><topic>Marine</topic><topic>Marine &amp; Freshwater Sciences</topic><topic>Marine biology</topic><topic>Microbiology</topic><topic>Oceanography</topic><topic>Original Paper</topic><topic>Photosynthesis</topic><topic>Respiration</topic><topic>Sea water ecosystems</topic><topic>Symbiodinium</topic><topic>symbionts</topic><topic>Symbiosis</topic><topic>Synecology</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Starzak, Dorota E</creatorcontrib><creatorcontrib>Quinnell, Rosanne G</creatorcontrib><creatorcontrib>Nitschke, Matthew R</creatorcontrib><creatorcontrib>Davy, Simon K</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep (ProQuest)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Marine biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Starzak, Dorota E</au><au>Quinnell, Rosanne G</au><au>Nitschke, Matthew R</au><au>Davy, Simon K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>influence of symbiont type on photosynthetic carbon flux in a model cnidarian–dinoflagellate symbiosis</atitle><jtitle>Marine biology</jtitle><stitle>Mar Biol</stitle><date>2014-03-01</date><risdate>2014</risdate><volume>161</volume><issue>3</issue><spage>711</spage><epage>724</epage><pages>711-724</pages><issn>0025-3162</issn><eissn>1432-1793</eissn><coden>MBIOAJ</coden><abstract>We measured the relationship between symbiont diversity, nutritional potential, and symbiotic success in the cnidarian–dinoflagellate symbiosis, by infecting aposymbiotic (i.e. symbiont-free) specimens of the model sea anemone Aiptasia sp. with a range of Symbiodinium types. Four cultured heterologous Symbiodinium types (i.e. originally isolated from other host species) were used, plus both cultured and freshly isolated homologous zooxanthellae (i.e. from Aiptasia sp.). Rates of photosynthesis, respiration, and symbiont growth were measured during symbiosis establishment and used to estimate the contribution of the zooxanthellae to the animal’s respiratory carbon demands (CZAR). Anemones containing Symbiodinium B1 (both homologous and heterologous) tended to attain higher CZAR values and hence benefit most from their symbiotic partners. This was despite Symbiodinium B1 not achieving the highest cell densities, though it did grow more quickly during the earliest stages of the infection process. Rather, the heterologous Symbiodinium types A1.4, E2, and F5.1 attained the highest densities, with populations of E2 and F5.1 also exhibiting the highest photosynthetic rates. This apparent success was countered, however, by very high rates of symbiosis respiration that ultimately resulted in lower CZAR values. This study highlights the impact of symbiont type on the functionality and autotrophic potential of the symbiosis. Most interestingly, it suggests that certain heterologous symbionts may behave opportunistically, proliferating rapidly but in a manner that is energetically costly to the host. Such negative host–symbiont interactions may contribute to the host–symbiont specificity seen in cnidarian–dinoflagellate symbioses and potentially limit the potential for partner switching as an adaptive mechanism.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00227-013-2372-8</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-3162
ispartof Marine biology, 2014-03, Vol.161 (3), p.711-724
issn 0025-3162
1432-1793
language eng
recordid cdi_proquest_miscellaneous_1505332647
source Springer Nature
subjects Aiptasia
Animal and plant ecology
Animal, plant and microbial ecology
Aquatic life
Biological and medical sciences
Biomedical and Life Sciences
Carbon
Cnidaria. Ctenaria
Coelenterata
dietary nutrient sources
Dinoflagellates
Environment
Environmental aspects
Freshwater & Marine Ecology
Fundamental and applied biological sciences. Psychology
Invertebrates
Life Sciences
Marine
Marine & Freshwater Sciences
Marine biology
Microbiology
Oceanography
Original Paper
Photosynthesis
Respiration
Sea water ecosystems
Symbiodinium
symbionts
Symbiosis
Synecology
Zoology
title influence of symbiont type on photosynthetic carbon flux in a model cnidarian–dinoflagellate symbiosis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A51%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=influence%20of%20symbiont%20type%20on%20photosynthetic%20carbon%20flux%20in%20a%20model%20cnidarian%E2%80%93dinoflagellate%20symbiosis&rft.jtitle=Marine%20biology&rft.au=Starzak,%20Dorota%20E&rft.date=2014-03-01&rft.volume=161&rft.issue=3&rft.spage=711&rft.epage=724&rft.pages=711-724&rft.issn=0025-3162&rft.eissn=1432-1793&rft.coden=MBIOAJ&rft_id=info:doi/10.1007/s00227-013-2372-8&rft_dat=%3Cgale_proqu%3EA365070731%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c508t-e4cc234230f3a2ab895b65a0d6dfa52616ea4cd938387c1f4aa16a4f4b65fc943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1500908671&rft_id=info:pmid/&rft_galeid=A365070731&rfr_iscdi=true