Loading…

Mineralization of 4-fluorocinnamic acid by a Rhodococcus strain

A bacterial strain capable of aerobic degradation of 4-fluorocinnamic acid (4-FCA) as the sole source of carbon and energy was isolated from a biofilm reactor operating for the treatment of 2-fluorophenol. The organism, designated as strain S2, was identified by 16S rRNA gene analysis as a member of...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2014-02, Vol.98 (4), p.1893-1905
Main Authors: Amorim, Catarina L, Ferreira, António C. S, Carvalho, Maria F, Afonso, Carlos M. M, Castro, Paula M. L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A bacterial strain capable of aerobic degradation of 4-fluorocinnamic acid (4-FCA) as the sole source of carbon and energy was isolated from a biofilm reactor operating for the treatment of 2-fluorophenol. The organism, designated as strain S2, was identified by 16S rRNA gene analysis as a member of the genus Rhodococcus. Strain S2 was able to mineralize 4-FCA as sole carbon and energy source. In the presence of a conventional carbon source (sodium acetate [SA]), growth rate of strain S2 was enhanced from 0.04 to 0.14 h⁻¹ when the culture medium was fed with 0.5 mM of 4-FCA, and the time for complete removal of 4-FCA decreased from 216 to 50 h. When grown in SA-supplemented medium, 4-FCA concentrations up to 1 mM did not affect the length of the lag phase, and for 4-FCA concentrations up to 3 mM, strain S2 was able to completely remove the target fluorinated compound. 4-Fluorobenzoate (4-FBA) was transiently formed in the culture medium, reaching concentrations up to 1.7 mM when the cultures were supplemented with 3.5 mM of 4-FCA. Trans,trans-muconate was also transiently formed as a metabolic intermediate. Compounds with molecular mass compatible with 3-carboxymuconate and 3-oxoadipate were also detected in the culture medium. Strain S2 was able to mineralize a range of other haloorganic compounds, including 2-fluorophenol, to which the biofilm reactor had been exposed. To our knowledge, this is the first time that mineralization of 4-FCA as the sole carbon source by a single bacterial culture is reported.
ISSN:0175-7598
1432-0614
DOI:10.1007/s00253-013-5149-6