Loading…

Programming Microbes Using Pulse Width Modulation of Optical Signals

Cells transmit and receive information via signalling pathways. A number of studies have revealed that information is encoded in the temporal dynamics of these pathways and has highlighted how pathway architecture can influence the propagation of signals in time and space. The functional properties...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular biology 2013-11, Vol.425 (22), p.4161-4166
Main Authors: Davidson, Eric A., Basu, Amar S., Bayer, Travis S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c495t-d66ce21c7bb6444f90e0b23f961e6b15cb26ab82d5cc8117006944474ed06c423
cites cdi_FETCH-LOGICAL-c495t-d66ce21c7bb6444f90e0b23f961e6b15cb26ab82d5cc8117006944474ed06c423
container_end_page 4166
container_issue 22
container_start_page 4161
container_title Journal of molecular biology
container_volume 425
creator Davidson, Eric A.
Basu, Amar S.
Bayer, Travis S.
description Cells transmit and receive information via signalling pathways. A number of studies have revealed that information is encoded in the temporal dynamics of these pathways and has highlighted how pathway architecture can influence the propagation of signals in time and space. The functional properties of pathway architecture can also be exploited by synthetic biologists to enable precise control of cellular physiology. Here, we characterised the response of a bacterial light-responsive, two-component system to oscillating signals of varying frequencies. We found that the system acted as a low-pass filter, able to respond to low-frequency oscillations and unable to respond to high-frequency oscillations. We then demonstrate that the low-pass filtering behavior can be exploited to enable precise control of gene expression using a strategy termed pulse width modulation (PWM). PWM is a common strategy used in electronics for information encoding that converts a series of digital input signals to an analog response. We further show how the PWM strategy extends the utility of bacterial optogenetic control, allowing the fine-tuning of expression levels, programming of temporal dynamics, and control of microbial physiology via manipulation of a metabolic enzyme. [Display omitted] •Precise control of gene expression is essential to synthetic biology.•We find that a light-responsive, two-component system acts as a low-pass filter.•PWM can be used to transform digital signals to analog gene expression outputs.•PWM enables precise programming of expression dynamics.•This strategy is further validated by controlling an essential metabolic pathway.
doi_str_mv 10.1016/j.jmb.2013.07.036
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1505350995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283613004841</els_id><sourcerecordid>1505350995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-d66ce21c7bb6444f90e0b23f961e6b15cb26ab82d5cc8117006944474ed06c423</originalsourceid><addsrcrecordid>eNqFkEtr3DAUhUVpaCaT_IBuipfd2L16WqarMkmbwgwJJCFLYcnXUw1-TCU7kH8fDZN2mawOF75z4H6EfKZQUKDq267Y9bZgQHkBZQFcfSALCrrKteL6I1kAMJYzzdUpOYtxBwCSC_2JnDJeMS0VLMjlbRi3oe57P2yzjXdhtBizh3g4b-cuYvbom-lPthmbuasnPw7Z2GY3-8m7usvu_Haou3hOTtoUePGaS_Lw8-p-dZ2vb379Xv1Y505UcsobpRwy6kprlRCirQDBMt5WiqKyVDrLVG01a6RzmtISQFWJKwU2oJxgfEm-Hnf3Yfw7Y5xM76PDrqsHHOdoqEwPSqgq-T4qhNKl5PyA0iOano8xYGv2wfd1eDYUzMGz2Znk2Rw8GyhN8pw6X17nZ9tj87_xT2wCvh8BTD6ePAYTncfBYeMDusk0o39j_gWo7owL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1446875335</pqid></control><display><type>article</type><title>Programming Microbes Using Pulse Width Modulation of Optical Signals</title><source>ScienceDirect Freedom Collection</source><creator>Davidson, Eric A. ; Basu, Amar S. ; Bayer, Travis S.</creator><creatorcontrib>Davidson, Eric A. ; Basu, Amar S. ; Bayer, Travis S.</creatorcontrib><description>Cells transmit and receive information via signalling pathways. A number of studies have revealed that information is encoded in the temporal dynamics of these pathways and has highlighted how pathway architecture can influence the propagation of signals in time and space. The functional properties of pathway architecture can also be exploited by synthetic biologists to enable precise control of cellular physiology. Here, we characterised the response of a bacterial light-responsive, two-component system to oscillating signals of varying frequencies. We found that the system acted as a low-pass filter, able to respond to low-frequency oscillations and unable to respond to high-frequency oscillations. We then demonstrate that the low-pass filtering behavior can be exploited to enable precise control of gene expression using a strategy termed pulse width modulation (PWM). PWM is a common strategy used in electronics for information encoding that converts a series of digital input signals to an analog response. We further show how the PWM strategy extends the utility of bacterial optogenetic control, allowing the fine-tuning of expression levels, programming of temporal dynamics, and control of microbial physiology via manipulation of a metabolic enzyme. [Display omitted] •Precise control of gene expression is essential to synthetic biology.•We find that a light-responsive, two-component system acts as a low-pass filter.•PWM can be used to transform digital signals to analog gene expression outputs.•PWM enables precise programming of expression dynamics.•This strategy is further validated by controlling an essential metabolic pathway.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2013.07.036</identifier><identifier>PMID: 23928560</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bacteria - enzymology ; Bacteria - genetics ; Bacteria - metabolism ; Gene Expression Regulation, Bacterial ; Light ; low-pass filter ; optogenetics ; pulse width modulation ; Signal Transduction</subject><ispartof>Journal of molecular biology, 2013-11, Vol.425 (22), p.4161-4166</ispartof><rights>2013 The Authors</rights><rights>2013. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-d66ce21c7bb6444f90e0b23f961e6b15cb26ab82d5cc8117006944474ed06c423</citedby><cites>FETCH-LOGICAL-c495t-d66ce21c7bb6444f90e0b23f961e6b15cb26ab82d5cc8117006944474ed06c423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23928560$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Davidson, Eric A.</creatorcontrib><creatorcontrib>Basu, Amar S.</creatorcontrib><creatorcontrib>Bayer, Travis S.</creatorcontrib><title>Programming Microbes Using Pulse Width Modulation of Optical Signals</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Cells transmit and receive information via signalling pathways. A number of studies have revealed that information is encoded in the temporal dynamics of these pathways and has highlighted how pathway architecture can influence the propagation of signals in time and space. The functional properties of pathway architecture can also be exploited by synthetic biologists to enable precise control of cellular physiology. Here, we characterised the response of a bacterial light-responsive, two-component system to oscillating signals of varying frequencies. We found that the system acted as a low-pass filter, able to respond to low-frequency oscillations and unable to respond to high-frequency oscillations. We then demonstrate that the low-pass filtering behavior can be exploited to enable precise control of gene expression using a strategy termed pulse width modulation (PWM). PWM is a common strategy used in electronics for information encoding that converts a series of digital input signals to an analog response. We further show how the PWM strategy extends the utility of bacterial optogenetic control, allowing the fine-tuning of expression levels, programming of temporal dynamics, and control of microbial physiology via manipulation of a metabolic enzyme. [Display omitted] •Precise control of gene expression is essential to synthetic biology.•We find that a light-responsive, two-component system acts as a low-pass filter.•PWM can be used to transform digital signals to analog gene expression outputs.•PWM enables precise programming of expression dynamics.•This strategy is further validated by controlling an essential metabolic pathway.</description><subject>Bacteria - enzymology</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Light</subject><subject>low-pass filter</subject><subject>optogenetics</subject><subject>pulse width modulation</subject><subject>Signal Transduction</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkEtr3DAUhUVpaCaT_IBuipfd2L16WqarMkmbwgwJJCFLYcnXUw1-TCU7kH8fDZN2mawOF75z4H6EfKZQUKDq267Y9bZgQHkBZQFcfSALCrrKteL6I1kAMJYzzdUpOYtxBwCSC_2JnDJeMS0VLMjlbRi3oe57P2yzjXdhtBizh3g4b-cuYvbom-lPthmbuasnPw7Z2GY3-8m7usvu_Haou3hOTtoUePGaS_Lw8-p-dZ2vb379Xv1Y505UcsobpRwy6kprlRCirQDBMt5WiqKyVDrLVG01a6RzmtISQFWJKwU2oJxgfEm-Hnf3Yfw7Y5xM76PDrqsHHOdoqEwPSqgq-T4qhNKl5PyA0iOano8xYGv2wfd1eDYUzMGz2Znk2Rw8GyhN8pw6X17nZ9tj87_xT2wCvh8BTD6ePAYTncfBYeMDusk0o39j_gWo7owL</recordid><startdate>20131115</startdate><enddate>20131115</enddate><creator>Davidson, Eric A.</creator><creator>Basu, Amar S.</creator><creator>Bayer, Travis S.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope></search><sort><creationdate>20131115</creationdate><title>Programming Microbes Using Pulse Width Modulation of Optical Signals</title><author>Davidson, Eric A. ; Basu, Amar S. ; Bayer, Travis S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-d66ce21c7bb6444f90e0b23f961e6b15cb26ab82d5cc8117006944474ed06c423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bacteria - enzymology</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Light</topic><topic>low-pass filter</topic><topic>optogenetics</topic><topic>pulse width modulation</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davidson, Eric A.</creatorcontrib><creatorcontrib>Basu, Amar S.</creatorcontrib><creatorcontrib>Bayer, Travis S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davidson, Eric A.</au><au>Basu, Amar S.</au><au>Bayer, Travis S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Programming Microbes Using Pulse Width Modulation of Optical Signals</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2013-11-15</date><risdate>2013</risdate><volume>425</volume><issue>22</issue><spage>4161</spage><epage>4166</epage><pages>4161-4166</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>Cells transmit and receive information via signalling pathways. A number of studies have revealed that information is encoded in the temporal dynamics of these pathways and has highlighted how pathway architecture can influence the propagation of signals in time and space. The functional properties of pathway architecture can also be exploited by synthetic biologists to enable precise control of cellular physiology. Here, we characterised the response of a bacterial light-responsive, two-component system to oscillating signals of varying frequencies. We found that the system acted as a low-pass filter, able to respond to low-frequency oscillations and unable to respond to high-frequency oscillations. We then demonstrate that the low-pass filtering behavior can be exploited to enable precise control of gene expression using a strategy termed pulse width modulation (PWM). PWM is a common strategy used in electronics for information encoding that converts a series of digital input signals to an analog response. We further show how the PWM strategy extends the utility of bacterial optogenetic control, allowing the fine-tuning of expression levels, programming of temporal dynamics, and control of microbial physiology via manipulation of a metabolic enzyme. [Display omitted] •Precise control of gene expression is essential to synthetic biology.•We find that a light-responsive, two-component system acts as a low-pass filter.•PWM can be used to transform digital signals to analog gene expression outputs.•PWM enables precise programming of expression dynamics.•This strategy is further validated by controlling an essential metabolic pathway.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>23928560</pmid><doi>10.1016/j.jmb.2013.07.036</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2013-11, Vol.425 (22), p.4161-4166
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_1505350995
source ScienceDirect Freedom Collection
subjects Bacteria - enzymology
Bacteria - genetics
Bacteria - metabolism
Gene Expression Regulation, Bacterial
Light
low-pass filter
optogenetics
pulse width modulation
Signal Transduction
title Programming Microbes Using Pulse Width Modulation of Optical Signals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A10%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Programming%20Microbes%20Using%20Pulse%20Width%20Modulation%20of%20Optical%20Signals&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Davidson,%20Eric%20A.&rft.date=2013-11-15&rft.volume=425&rft.issue=22&rft.spage=4161&rft.epage=4166&rft.pages=4161-4166&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2013.07.036&rft_dat=%3Cproquest_cross%3E1505350995%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c495t-d66ce21c7bb6444f90e0b23f961e6b15cb26ab82d5cc8117006944474ed06c423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1446875335&rft_id=info:pmid/23928560&rfr_iscdi=true