Loading…

Importance of acyl-CoA availability in interpretation of carnitine palmitoyltransferase I kinetics

Bovine serum albumin is generally employed as a substrate depot for the delivery of acyl units to lipid metabolizing enzymes in vitro. Here we test the possibility that albumin alters the availability of substrate to mitochondrial carnitine palmitoyltransferase I and thereby alters its apparent kine...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1988-12, Vol.263 (34), p.18160-18167
Main Authors: Pauly, D F, McMillin, J B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bovine serum albumin is generally employed as a substrate depot for the delivery of acyl units to lipid metabolizing enzymes in vitro. Here we test the possibility that albumin alters the availability of substrate to mitochondrial carnitine palmitoyltransferase I and thereby alters its apparent kinetics. Binding competition with palmitoyl-CoA indicates that albumin has 5-6 high affinity sites which avidly bind the substrate, while isolated mitochondria compete favorably for substrate only as the albumin sites become saturated. In contrast to albumin, artificial phospholipid vesicles bind palmitoyl-CoA uniformly. Palmitoyl-CoA distribution between vesicles and mitochondrial membranes appears simply to be a function of the relative size of the two lipid compartments. Both albumin and artificial vesicles reduce the effective concentration of substrate available to the enzyme and in this way reduce apparent affinity. Direct measurement of mitochondrially bound substrate removes this effect and brings the results into agreement with an affinity constant of 6-7 nmol/mg. Changes in gross mitochondrial structure, as indicated by decreased optical density and increased nonpelleting protein, do not begin occurring until levels of mitochondrially bound palmitoyl-CoA are 15 times greater than this. The highly sigmoidal activity profile of carnitine palmitoyltransferase with respect to palmitoyl-CoA (apparent Hill coefficient = 3.0 +/- 0.3) is lost when vesicles are substituted for albumin, suggesting that albumin binding sites contribute to the sigmoidal kinetics in the range of palmitoyl-CoA studied.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(19)81339-X