Loading…
Density estimation for spatial-temporal models
In this paper a k -nearest neighbor type estimator of the marginal density function for a random field which evolves with time is considered. Considering dependence, the consistency and asymptotic distribution are studied for the stationary and nonstationary cases. In particular, the parametric rate...
Saved in:
Published in: | Test (Madrid, Spain) Spain), 2013-06, Vol.22 (2), p.321-342 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c377t-a89ea9d9eaa312125fe4c5e476da53dfe96a3c76fddc4ef5da11347ce06193893 |
container_end_page | 342 |
container_issue | 2 |
container_start_page | 321 |
container_title | Test (Madrid, Spain) |
container_volume | 22 |
creator | Forzani, Liliana Fraiman, Ricardo Llop, Pamela |
description | In this paper a
k
-nearest neighbor type estimator of the marginal density function for a random field which evolves with time is considered. Considering dependence, the consistency and asymptotic distribution are studied for the stationary and nonstationary cases. In particular, the parametric rate of convergence
is proven when the random field is stationary. The performance of the estimator is shown by applying our procedure to a real data example. |
doi_str_mv | 10.1007/s11749-012-0313-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506356025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2977590521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-a89ea9d9eaa312125fe4c5e476da53dfe96a3c76fddc4ef5da11347ce06193893</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8FL16yZjJN2h5l_YQFL3oOoZlKl7apSXvYf2-WehDBSzKH5x3eeRi7BrEBIYq7CFDkFRcguUBAjidsBaVGXkotTtMMiFzoUp-zixj3QuhcS1ixzQMNsZ0OGcWp7e3U-iFrfMjimGbb8Yn60QfbZb131MVLdtbYLtLVz79mH0-P79sXvnt7ft3e73iNRTFxW1ZkK5ceiyBBqobyWlFeaGcVuoYqbbEudONcnVOjnE398qImoaHCssI1u132jsF_zamb6dtYU9fZgfwcDSihUWkhVUJv_qB7P4chtTOAKsdkA44ULFQdfIyBGjOGdG84GBDmaNAsBk0yaI4GDaaMXDIxscMnhV-b_w19A5SUcnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1354331315</pqid></control><display><type>article</type><title>Density estimation for spatial-temporal models</title><source>ABI/INFORM Global (ProQuest)</source><creator>Forzani, Liliana ; Fraiman, Ricardo ; Llop, Pamela</creator><creatorcontrib>Forzani, Liliana ; Fraiman, Ricardo ; Llop, Pamela</creatorcontrib><description>In this paper a
k
-nearest neighbor type estimator of the marginal density function for a random field which evolves with time is considered. Considering dependence, the consistency and asymptotic distribution are studied for the stationary and nonstationary cases. In particular, the parametric rate of convergence
is proven when the random field is stationary. The performance of the estimator is shown by applying our procedure to a real data example.</description><identifier>ISSN: 1133-0686</identifier><identifier>EISSN: 1863-8260</identifier><identifier>DOI: 10.1007/s11749-012-0313-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Asymptotic properties ; Density ; Dependent sample ; Economics ; Estimates ; Finance ; Insurance ; Management ; Mathematical functions ; Mathematics and Statistics ; Original Paper ; Random variables ; Statistical Theory and Methods ; Statistics ; Statistics for Business ; Studies</subject><ispartof>Test (Madrid, Spain), 2013-06, Vol.22 (2), p.321-342</ispartof><rights>Sociedad de Estadística e Investigación Operativa 2012</rights><rights>Sociedad de Estadística e Investigación Operativa 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c377t-a89ea9d9eaa312125fe4c5e476da53dfe96a3c76fddc4ef5da11347ce06193893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1354331315?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11679,27915,27916,36051,36052,44354</link.rule.ids></links><search><creatorcontrib>Forzani, Liliana</creatorcontrib><creatorcontrib>Fraiman, Ricardo</creatorcontrib><creatorcontrib>Llop, Pamela</creatorcontrib><title>Density estimation for spatial-temporal models</title><title>Test (Madrid, Spain)</title><addtitle>TEST</addtitle><description>In this paper a
k
-nearest neighbor type estimator of the marginal density function for a random field which evolves with time is considered. Considering dependence, the consistency and asymptotic distribution are studied for the stationary and nonstationary cases. In particular, the parametric rate of convergence
is proven when the random field is stationary. The performance of the estimator is shown by applying our procedure to a real data example.</description><subject>Asymptotic properties</subject><subject>Density</subject><subject>Dependent sample</subject><subject>Economics</subject><subject>Estimates</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematical functions</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Random variables</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Studies</subject><issn>1133-0686</issn><issn>1863-8260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8FL16yZjJN2h5l_YQFL3oOoZlKl7apSXvYf2-WehDBSzKH5x3eeRi7BrEBIYq7CFDkFRcguUBAjidsBaVGXkotTtMMiFzoUp-zixj3QuhcS1ixzQMNsZ0OGcWp7e3U-iFrfMjimGbb8Yn60QfbZb131MVLdtbYLtLVz79mH0-P79sXvnt7ft3e73iNRTFxW1ZkK5ceiyBBqobyWlFeaGcVuoYqbbEudONcnVOjnE398qImoaHCssI1u132jsF_zamb6dtYU9fZgfwcDSihUWkhVUJv_qB7P4chtTOAKsdkA44ULFQdfIyBGjOGdG84GBDmaNAsBk0yaI4GDaaMXDIxscMnhV-b_w19A5SUcnw</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Forzani, Liliana</creator><creator>Fraiman, Ricardo</creator><creator>Llop, Pamela</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0T</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20130601</creationdate><title>Density estimation for spatial-temporal models</title><author>Forzani, Liliana ; Fraiman, Ricardo ; Llop, Pamela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-a89ea9d9eaa312125fe4c5e476da53dfe96a3c76fddc4ef5da11347ce06193893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asymptotic properties</topic><topic>Density</topic><topic>Dependent sample</topic><topic>Economics</topic><topic>Estimates</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematical functions</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Random variables</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forzani, Liliana</creatorcontrib><creatorcontrib>Fraiman, Ricardo</creatorcontrib><creatorcontrib>Llop, Pamela</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Health Management Database (Proquest)</collection><collection>ProQuest Engineering Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Test (Madrid, Spain)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forzani, Liliana</au><au>Fraiman, Ricardo</au><au>Llop, Pamela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Density estimation for spatial-temporal models</atitle><jtitle>Test (Madrid, Spain)</jtitle><stitle>TEST</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>22</volume><issue>2</issue><spage>321</spage><epage>342</epage><pages>321-342</pages><issn>1133-0686</issn><eissn>1863-8260</eissn><abstract>In this paper a
k
-nearest neighbor type estimator of the marginal density function for a random field which evolves with time is considered. Considering dependence, the consistency and asymptotic distribution are studied for the stationary and nonstationary cases. In particular, the parametric rate of convergence
is proven when the random field is stationary. The performance of the estimator is shown by applying our procedure to a real data example.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s11749-012-0313-3</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1133-0686 |
ispartof | Test (Madrid, Spain), 2013-06, Vol.22 (2), p.321-342 |
issn | 1133-0686 1863-8260 |
language | eng |
recordid | cdi_proquest_miscellaneous_1506356025 |
source | ABI/INFORM Global (ProQuest) |
subjects | Asymptotic properties Density Dependent sample Economics Estimates Finance Insurance Management Mathematical functions Mathematics and Statistics Original Paper Random variables Statistical Theory and Methods Statistics Statistics for Business Studies |
title | Density estimation for spatial-temporal models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A48%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Density%20estimation%20for%20spatial-temporal%20models&rft.jtitle=Test%20(Madrid,%20Spain)&rft.au=Forzani,%20Liliana&rft.date=2013-06-01&rft.volume=22&rft.issue=2&rft.spage=321&rft.epage=342&rft.pages=321-342&rft.issn=1133-0686&rft.eissn=1863-8260&rft_id=info:doi/10.1007/s11749-012-0313-3&rft_dat=%3Cproquest_cross%3E2977590521%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-a89ea9d9eaa312125fe4c5e476da53dfe96a3c76fddc4ef5da11347ce06193893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1354331315&rft_id=info:pmid/&rfr_iscdi=true |