Loading…

Density estimation for spatial-temporal models

In this paper a k -nearest neighbor type estimator of the marginal density function for a random field which evolves with time is considered. Considering dependence, the consistency and asymptotic distribution are studied for the stationary and nonstationary cases. In particular, the parametric rate...

Full description

Saved in:
Bibliographic Details
Published in:Test (Madrid, Spain) Spain), 2013-06, Vol.22 (2), p.321-342
Main Authors: Forzani, Liliana, Fraiman, Ricardo, Llop, Pamela
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c377t-a89ea9d9eaa312125fe4c5e476da53dfe96a3c76fddc4ef5da11347ce06193893
container_end_page 342
container_issue 2
container_start_page 321
container_title Test (Madrid, Spain)
container_volume 22
creator Forzani, Liliana
Fraiman, Ricardo
Llop, Pamela
description In this paper a k -nearest neighbor type estimator of the marginal density function for a random field which evolves with time is considered. Considering dependence, the consistency and asymptotic distribution are studied for the stationary and nonstationary cases. In particular, the parametric rate of convergence is proven when the random field is stationary. The performance of the estimator is shown by applying our procedure to a real data example.
doi_str_mv 10.1007/s11749-012-0313-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506356025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2977590521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-a89ea9d9eaa312125fe4c5e476da53dfe96a3c76fddc4ef5da11347ce06193893</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8FL16yZjJN2h5l_YQFL3oOoZlKl7apSXvYf2-WehDBSzKH5x3eeRi7BrEBIYq7CFDkFRcguUBAjidsBaVGXkotTtMMiFzoUp-zixj3QuhcS1ixzQMNsZ0OGcWp7e3U-iFrfMjimGbb8Yn60QfbZb131MVLdtbYLtLVz79mH0-P79sXvnt7ft3e73iNRTFxW1ZkK5ceiyBBqobyWlFeaGcVuoYqbbEudONcnVOjnE398qImoaHCssI1u132jsF_zamb6dtYU9fZgfwcDSihUWkhVUJv_qB7P4chtTOAKsdkA44ULFQdfIyBGjOGdG84GBDmaNAsBk0yaI4GDaaMXDIxscMnhV-b_w19A5SUcnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1354331315</pqid></control><display><type>article</type><title>Density estimation for spatial-temporal models</title><source>ABI/INFORM Global (ProQuest)</source><creator>Forzani, Liliana ; Fraiman, Ricardo ; Llop, Pamela</creator><creatorcontrib>Forzani, Liliana ; Fraiman, Ricardo ; Llop, Pamela</creatorcontrib><description>In this paper a k -nearest neighbor type estimator of the marginal density function for a random field which evolves with time is considered. Considering dependence, the consistency and asymptotic distribution are studied for the stationary and nonstationary cases. In particular, the parametric rate of convergence is proven when the random field is stationary. The performance of the estimator is shown by applying our procedure to a real data example.</description><identifier>ISSN: 1133-0686</identifier><identifier>EISSN: 1863-8260</identifier><identifier>DOI: 10.1007/s11749-012-0313-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Asymptotic properties ; Density ; Dependent sample ; Economics ; Estimates ; Finance ; Insurance ; Management ; Mathematical functions ; Mathematics and Statistics ; Original Paper ; Random variables ; Statistical Theory and Methods ; Statistics ; Statistics for Business ; Studies</subject><ispartof>Test (Madrid, Spain), 2013-06, Vol.22 (2), p.321-342</ispartof><rights>Sociedad de Estadística e Investigación Operativa 2012</rights><rights>Sociedad de Estadística e Investigación Operativa 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c377t-a89ea9d9eaa312125fe4c5e476da53dfe96a3c76fddc4ef5da11347ce06193893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1354331315?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11679,27915,27916,36051,36052,44354</link.rule.ids></links><search><creatorcontrib>Forzani, Liliana</creatorcontrib><creatorcontrib>Fraiman, Ricardo</creatorcontrib><creatorcontrib>Llop, Pamela</creatorcontrib><title>Density estimation for spatial-temporal models</title><title>Test (Madrid, Spain)</title><addtitle>TEST</addtitle><description>In this paper a k -nearest neighbor type estimator of the marginal density function for a random field which evolves with time is considered. Considering dependence, the consistency and asymptotic distribution are studied for the stationary and nonstationary cases. In particular, the parametric rate of convergence is proven when the random field is stationary. The performance of the estimator is shown by applying our procedure to a real data example.</description><subject>Asymptotic properties</subject><subject>Density</subject><subject>Dependent sample</subject><subject>Economics</subject><subject>Estimates</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematical functions</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Random variables</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Studies</subject><issn>1133-0686</issn><issn>1863-8260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8FL16yZjJN2h5l_YQFL3oOoZlKl7apSXvYf2-WehDBSzKH5x3eeRi7BrEBIYq7CFDkFRcguUBAjidsBaVGXkotTtMMiFzoUp-zixj3QuhcS1ixzQMNsZ0OGcWp7e3U-iFrfMjimGbb8Yn60QfbZb131MVLdtbYLtLVz79mH0-P79sXvnt7ft3e73iNRTFxW1ZkK5ceiyBBqobyWlFeaGcVuoYqbbEudONcnVOjnE398qImoaHCssI1u132jsF_zamb6dtYU9fZgfwcDSihUWkhVUJv_qB7P4chtTOAKsdkA44ULFQdfIyBGjOGdG84GBDmaNAsBk0yaI4GDaaMXDIxscMnhV-b_w19A5SUcnw</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Forzani, Liliana</creator><creator>Fraiman, Ricardo</creator><creator>Llop, Pamela</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0T</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20130601</creationdate><title>Density estimation for spatial-temporal models</title><author>Forzani, Liliana ; Fraiman, Ricardo ; Llop, Pamela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-a89ea9d9eaa312125fe4c5e476da53dfe96a3c76fddc4ef5da11347ce06193893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asymptotic properties</topic><topic>Density</topic><topic>Dependent sample</topic><topic>Economics</topic><topic>Estimates</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematical functions</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Random variables</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forzani, Liliana</creatorcontrib><creatorcontrib>Fraiman, Ricardo</creatorcontrib><creatorcontrib>Llop, Pamela</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Health Management Database (Proquest)</collection><collection>ProQuest Engineering Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Test (Madrid, Spain)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forzani, Liliana</au><au>Fraiman, Ricardo</au><au>Llop, Pamela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Density estimation for spatial-temporal models</atitle><jtitle>Test (Madrid, Spain)</jtitle><stitle>TEST</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>22</volume><issue>2</issue><spage>321</spage><epage>342</epage><pages>321-342</pages><issn>1133-0686</issn><eissn>1863-8260</eissn><abstract>In this paper a k -nearest neighbor type estimator of the marginal density function for a random field which evolves with time is considered. Considering dependence, the consistency and asymptotic distribution are studied for the stationary and nonstationary cases. In particular, the parametric rate of convergence is proven when the random field is stationary. The performance of the estimator is shown by applying our procedure to a real data example.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s11749-012-0313-3</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1133-0686
ispartof Test (Madrid, Spain), 2013-06, Vol.22 (2), p.321-342
issn 1133-0686
1863-8260
language eng
recordid cdi_proquest_miscellaneous_1506356025
source ABI/INFORM Global (ProQuest)
subjects Asymptotic properties
Density
Dependent sample
Economics
Estimates
Finance
Insurance
Management
Mathematical functions
Mathematics and Statistics
Original Paper
Random variables
Statistical Theory and Methods
Statistics
Statistics for Business
Studies
title Density estimation for spatial-temporal models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A48%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Density%20estimation%20for%20spatial-temporal%20models&rft.jtitle=Test%20(Madrid,%20Spain)&rft.au=Forzani,%20Liliana&rft.date=2013-06-01&rft.volume=22&rft.issue=2&rft.spage=321&rft.epage=342&rft.pages=321-342&rft.issn=1133-0686&rft.eissn=1863-8260&rft_id=info:doi/10.1007/s11749-012-0313-3&rft_dat=%3Cproquest_cross%3E2977590521%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-a89ea9d9eaa312125fe4c5e476da53dfe96a3c76fddc4ef5da11347ce06193893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1354331315&rft_id=info:pmid/&rfr_iscdi=true