Loading…

Model-free model-fitting and predictive distributions

The problem of prediction is revisited with a view towards going beyond the typical nonparametric setting and reaching a fully model-free environment for predictive inference, i.e., point predictors and predictive intervals. A basic principle of model-free prediction is laid out based on the notion...

Full description

Saved in:
Bibliographic Details
Published in:Test (Madrid, Spain) Spain), 2013-06, Vol.22 (2), p.183-221
Main Author: Politis, Dimitris N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c425t-677e18e1cc1076b6e7542019343ee57938eecc44faeea25dd507ee1049714a303
cites cdi_FETCH-LOGICAL-c425t-677e18e1cc1076b6e7542019343ee57938eecc44faeea25dd507ee1049714a303
container_end_page 221
container_issue 2
container_start_page 183
container_title Test (Madrid, Spain)
container_volume 22
creator Politis, Dimitris N.
description The problem of prediction is revisited with a view towards going beyond the typical nonparametric setting and reaching a fully model-free environment for predictive inference, i.e., point predictors and predictive intervals. A basic principle of model-free prediction is laid out based on the notion of transforming a given setup into one that is easier to work with, namely i.i.d. or Gaussian. As an application, the problem of nonparametric regression is addressed in detail; the model-free predictors are worked out, and shown to be applicable under minimal assumptions. Interestingly, model-free prediction in regression is a totally automatic technique that does not necessitate the search for an optimal data transformation before model fitting. The resulting model-free predictive distributions and intervals are compared to their corresponding model-based analogs, and the use of cross-validation is extensively discussed. As an aside, improved prediction intervals in linear regression are also obtained.
doi_str_mv 10.1007/s11749-013-0317-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506358625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2977590541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-677e18e1cc1076b6e7542019343ee57938eecc44faeea25dd507ee1049714a303</originalsourceid><addsrcrecordid>eNp1kMtKxEAQRRtRcBz9AHcBN25aq9KvZCmDLxhxo-sm06kMPeQxdieCf28PcSGCq7pQ5xbFYewS4QYBzG1ENLLkgIKDQMPNEVtgoQUvcg3HKaNIG13oU3YW4w5AS53jgqmXoaaWN4Eo6-box9H326zq62wfqPZu9J-U1T6OwW-m0Q99PGcnTdVGuviZS_b-cP-2euLr18fn1d2aO5mrkWtjCAtC5xCM3mgySuaApZCCSJlSFETOSdlURFWu6lqBIUKQpUFZCRBLdj3f3YfhY6I42s5HR21b9TRM0aICLVShc5XQqz_obphCn76zKJQUAmVRJgpnyoUhxkCN3QffVeHLItiDSDuLtEmkPYi0JnXyuRMT228p_Lr8b-kbNtdz_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1354331489</pqid></control><display><type>article</type><title>Model-free model-fitting and predictive distributions</title><source>ABI/INFORM global</source><creator>Politis, Dimitris N.</creator><creatorcontrib>Politis, Dimitris N.</creatorcontrib><description>The problem of prediction is revisited with a view towards going beyond the typical nonparametric setting and reaching a fully model-free environment for predictive inference, i.e., point predictors and predictive intervals. A basic principle of model-free prediction is laid out based on the notion of transforming a given setup into one that is easier to work with, namely i.i.d. or Gaussian. As an application, the problem of nonparametric regression is addressed in detail; the model-free predictors are worked out, and shown to be applicable under minimal assumptions. Interestingly, model-free prediction in regression is a totally automatic technique that does not necessitate the search for an optimal data transformation before model fitting. The resulting model-free predictive distributions and intervals are compared to their corresponding model-based analogs, and the use of cross-validation is extensively discussed. As an aside, improved prediction intervals in linear regression are also obtained.</description><identifier>ISSN: 1133-0686</identifier><identifier>EISSN: 1863-8260</identifier><identifier>DOI: 10.1007/s11749-013-0317-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Datasets ; Economics ; Estimates ; Finance ; Fittings ; Hypothesis testing ; Insurance ; Invited Paper ; Management ; Mathematics and Statistics ; Predictions ; Random variables ; Regression analysis ; Statistical Theory and Methods ; Statistics ; Statistics for Business ; Stochastic models</subject><ispartof>Test (Madrid, Spain), 2013-06, Vol.22 (2), p.183-221</ispartof><rights>Sociedad de Estadística e Investigación Operativa 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-677e18e1cc1076b6e7542019343ee57938eecc44faeea25dd507ee1049714a303</citedby><cites>FETCH-LOGICAL-c425t-677e18e1cc1076b6e7542019343ee57938eecc44faeea25dd507ee1049714a303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1354331489?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,11671,27907,27908,36043,36044,44346</link.rule.ids></links><search><creatorcontrib>Politis, Dimitris N.</creatorcontrib><title>Model-free model-fitting and predictive distributions</title><title>Test (Madrid, Spain)</title><addtitle>TEST</addtitle><description>The problem of prediction is revisited with a view towards going beyond the typical nonparametric setting and reaching a fully model-free environment for predictive inference, i.e., point predictors and predictive intervals. A basic principle of model-free prediction is laid out based on the notion of transforming a given setup into one that is easier to work with, namely i.i.d. or Gaussian. As an application, the problem of nonparametric regression is addressed in detail; the model-free predictors are worked out, and shown to be applicable under minimal assumptions. Interestingly, model-free prediction in regression is a totally automatic technique that does not necessitate the search for an optimal data transformation before model fitting. The resulting model-free predictive distributions and intervals are compared to their corresponding model-based analogs, and the use of cross-validation is extensively discussed. As an aside, improved prediction intervals in linear regression are also obtained.</description><subject>Datasets</subject><subject>Economics</subject><subject>Estimates</subject><subject>Finance</subject><subject>Fittings</subject><subject>Hypothesis testing</subject><subject>Insurance</subject><subject>Invited Paper</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Predictions</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Stochastic models</subject><issn>1133-0686</issn><issn>1863-8260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kMtKxEAQRRtRcBz9AHcBN25aq9KvZCmDLxhxo-sm06kMPeQxdieCf28PcSGCq7pQ5xbFYewS4QYBzG1ENLLkgIKDQMPNEVtgoQUvcg3HKaNIG13oU3YW4w5AS53jgqmXoaaWN4Eo6-box9H326zq62wfqPZu9J-U1T6OwW-m0Q99PGcnTdVGuviZS_b-cP-2euLr18fn1d2aO5mrkWtjCAtC5xCM3mgySuaApZCCSJlSFETOSdlURFWu6lqBIUKQpUFZCRBLdj3f3YfhY6I42s5HR21b9TRM0aICLVShc5XQqz_obphCn76zKJQUAmVRJgpnyoUhxkCN3QffVeHLItiDSDuLtEmkPYi0JnXyuRMT228p_Lr8b-kbNtdz_g</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Politis, Dimitris N.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0T</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20130601</creationdate><title>Model-free model-fitting and predictive distributions</title><author>Politis, Dimitris N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-677e18e1cc1076b6e7542019343ee57938eecc44faeea25dd507ee1049714a303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Datasets</topic><topic>Economics</topic><topic>Estimates</topic><topic>Finance</topic><topic>Fittings</topic><topic>Hypothesis testing</topic><topic>Insurance</topic><topic>Invited Paper</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Predictions</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Politis, Dimitris N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>ProQuest Healthcare Administration Database</collection><collection>Engineering Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Test (Madrid, Spain)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Politis, Dimitris N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-free model-fitting and predictive distributions</atitle><jtitle>Test (Madrid, Spain)</jtitle><stitle>TEST</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>22</volume><issue>2</issue><spage>183</spage><epage>221</epage><pages>183-221</pages><issn>1133-0686</issn><eissn>1863-8260</eissn><abstract>The problem of prediction is revisited with a view towards going beyond the typical nonparametric setting and reaching a fully model-free environment for predictive inference, i.e., point predictors and predictive intervals. A basic principle of model-free prediction is laid out based on the notion of transforming a given setup into one that is easier to work with, namely i.i.d. or Gaussian. As an application, the problem of nonparametric regression is addressed in detail; the model-free predictors are worked out, and shown to be applicable under minimal assumptions. Interestingly, model-free prediction in regression is a totally automatic technique that does not necessitate the search for an optimal data transformation before model fitting. The resulting model-free predictive distributions and intervals are compared to their corresponding model-based analogs, and the use of cross-validation is extensively discussed. As an aside, improved prediction intervals in linear regression are also obtained.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s11749-013-0317-7</doi><tpages>39</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1133-0686
ispartof Test (Madrid, Spain), 2013-06, Vol.22 (2), p.183-221
issn 1133-0686
1863-8260
language eng
recordid cdi_proquest_miscellaneous_1506358625
source ABI/INFORM global
subjects Datasets
Economics
Estimates
Finance
Fittings
Hypothesis testing
Insurance
Invited Paper
Management
Mathematics and Statistics
Predictions
Random variables
Regression analysis
Statistical Theory and Methods
Statistics
Statistics for Business
Stochastic models
title Model-free model-fitting and predictive distributions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A24%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-free%20model-fitting%20and%20predictive%20distributions&rft.jtitle=Test%20(Madrid,%20Spain)&rft.au=Politis,%20Dimitris%20N.&rft.date=2013-06-01&rft.volume=22&rft.issue=2&rft.spage=183&rft.epage=221&rft.pages=183-221&rft.issn=1133-0686&rft.eissn=1863-8260&rft_id=info:doi/10.1007/s11749-013-0317-7&rft_dat=%3Cproquest_cross%3E2977590541%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-677e18e1cc1076b6e7542019343ee57938eecc44faeea25dd507ee1049714a303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1354331489&rft_id=info:pmid/&rfr_iscdi=true