Loading…

Effects of 0.1 wt% Ni addition and rapid solidification process on Sn–9Zn solder

Effects of 0.1 wt% Ni addition and rapid solidification process on Sn–9Zn solder alloy were investigated. Characteristics of Sn–9Zn–0.1Ni alloy were analyzed compared with those of as-solidified Sn–9Zn alloy. Mechanical properties and interfacial microstructure of solder/Cu joints obtained using the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science. Materials in electronics 2013-12, Vol.24 (12), p.4868-4872
Main Authors: Jing, Yanxia, Sheng, Guangmin, Huang, Zhenhua, Zhao, Guoji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Effects of 0.1 wt% Ni addition and rapid solidification process on Sn–9Zn solder alloy were investigated. Characteristics of Sn–9Zn–0.1Ni alloy were analyzed compared with those of as-solidified Sn–9Zn alloy. Mechanical properties and interfacial microstructure of solder/Cu joints obtained using these solders were comparatively studied. By comparison with as-solidified Sn–9Zn alloy, the wettability of solder was obviously improved with 0.1 wt% Ni addition, and the melting behavior of the solder was promoted due to the rapid solidification process. The corrosion resistance of as-solidified and rapidly solidified Sn–9Zn–0.1Ni alloys was improved due to the formation of Ni–Zn intermetallic compound (IMC) and the refining of Zn-rich phases. Formation and growth of IMCs at the interface of Sn–9Zn–0.1Ni/Cu joints was significantly depressed. Rapid solidification process promoted the interfacial reaction during soldering and improved the bonding strength of joints.
ISSN:0957-4522
1573-482X
DOI:10.1007/s10854-013-1490-x