Loading…

Investigation of LaBr3:Ce probe for gamma-ray spectroscopy and dosimetry

The main thrust of this work is the investigation of performance of relatively new commercial LaBr3:Ce probe (Inspector 1000™ with LaBr3:Ce crystal) for gamma-ray spectroscopy and dosimetry measurements in comparison to LaCl3:Ce and NaI:Tl scintillators. The crystals were irradiated by a wide range...

Full description

Saved in:
Bibliographic Details
Published in:Radiation physics and chemistry (Oxford, England : 1993) England : 1993), 2014-02, Vol.95, p.137-140
Main Authors: Maghraby, Ahmed M., Alzimami, K.S., Alkhorayef, M.A., Alsafi, K.G., Ma, A., Alfuraih, A.A., Alghamdi, A.A., Spyrou, N.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The main thrust of this work is the investigation of performance of relatively new commercial LaBr3:Ce probe (Inspector 1000™ with LaBr3:Ce crystal) for gamma-ray spectroscopy and dosimetry measurements in comparison to LaCl3:Ce and NaI:Tl scintillators. The crystals were irradiated by a wide range of energies (57Co, 22Na, 18F, 137Cs and 60Co). The study involved recording of detected spectra and measurement of energy resolution, photopeak efficiency, internal radioactivity measurements as well as dose rate. The Monte Carlo package, Geant4 Application for Tomographic Emission (GATE) was used to validate the experiments. Overall results showed very good agreement between the measurements and the simulations. The LaBr3:Ce crystal has excellent energy resolution, energy resolutions of (3.37±0.05)% and (2.98±0.07)% for a 137Cs 662keV and a 60Co 1332keV gamma-ray point sources respectively, were recorded. The disadvantage of the lanthanum halide scintillators is their internal radioactivity. Inspector 1000™ with LaBr3:Ce scintillator has shown an accurate and quick dose measurements at Positron Emission Tomography (PET) Units which allows accurate assessment of the radiation dose received by staff members compared to the use of electronic personal dosimeters (EPD). ► Development of a radiation detector. ► Monte-Carlo simulation of the LaBr3:Ce detector. ► Use of the LaBr3:Ce detector and comparison to other detectors.
ISSN:0969-806X
1879-0895
DOI:10.1016/j.radphyschem.2012.12.010