Loading…

Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques

With modern data collection system and computers used for on-line process monitoring and fault identification in manufacturing processes, it is common to monitor more than one correlated process variables simultaneously. The main problems in most multivariate control charts (e.g., T 2 charts, MCUSUM...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent manufacturing 2013-02, Vol.24 (1), p.25-34
Main Authors: He, Shu-Guang, He, Zhen, Wang, Gang A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c489t-28f7091e01b6ed96255c998adbeb2e987885452f8d8d648a2cb54debd63e90183
cites cdi_FETCH-LOGICAL-c489t-28f7091e01b6ed96255c998adbeb2e987885452f8d8d648a2cb54debd63e90183
container_end_page 34
container_issue 1
container_start_page 25
container_title Journal of intelligent manufacturing
container_volume 24
creator He, Shu-Guang
He, Zhen
Wang, Gang A.
description With modern data collection system and computers used for on-line process monitoring and fault identification in manufacturing processes, it is common to monitor more than one correlated process variables simultaneously. The main problems in most multivariate control charts (e.g., T 2 charts, MCUSUM charts, MEWMA charts) are that they cannot give direct information on which variable or subset of variables caused the out-of-control signals. A Decision Tree (DT) learning based model for bivariate process mean shift monitoring and fault identification is proposed in this paper under the assumption of constant variance-covariance matrix. Two DT classifiers based on the C5.0 algorithm are built, one for process monitoring and the other for fault identification. Simulation results show that the proposed model can not only detect the mean shifts but also give information on the variable or subset of variables that cause the out-of-control signals and its/their deviate directions. Finally a bivariate process example is presented and compared with the results of an existing model.
doi_str_mv 10.1007/s10845-011-0533-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506366062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1506366062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-28f7091e01b6ed96255c998adbeb2e987885452f8d8d648a2cb54debd63e90183</originalsourceid><addsrcrecordid>eNp1kUFr3DAQhUVJoJukP6A3QS-5OBnJliwdS0jbQCCX5CxkadwoeOWtRg7pv6_N9lAKOQ0M73vzmMfYZwFXAqC_JgGmUw0I0YBq20Z9YDuhetkY0akTtgOrdKOUUB_ZGdELAFijxY69PeQpZeT7Oac6l5R_cp8jH_0yVZ4i5prGFHxNc-bzyPfoM6fnNFbiKfMhvfqSfEV-KHNAIiS-0GYSMSTaoFoQ-YS-5G1dMTzn9GtBumCno58IP_2d5-zp2-3jzY_m_uH73c3X-yZ0xtZGmrEHKxDEoDFaLZUK1hofBxwkWtMbozolRxNN1J3xMgyqizhE3aIFYdpzdnn0XRNud6vbJwo4TT7jvJATCnSrNWi5Sr_8J32Zl5LXdE7IHtpO9V27qsRRFcpMVHB0h5L2vvx2AtzWhTt24dYu3NaFUysjjwwdthdj-cf5XegPbAyN4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1270345743</pqid></control><display><type>article</type><title>Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques</title><source>Business Source Ultimate</source><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>He, Shu-Guang ; He, Zhen ; Wang, Gang A.</creator><creatorcontrib>He, Shu-Guang ; He, Zhen ; Wang, Gang A.</creatorcontrib><description>With modern data collection system and computers used for on-line process monitoring and fault identification in manufacturing processes, it is common to monitor more than one correlated process variables simultaneously. The main problems in most multivariate control charts (e.g., T 2 charts, MCUSUM charts, MEWMA charts) are that they cannot give direct information on which variable or subset of variables caused the out-of-control signals. A Decision Tree (DT) learning based model for bivariate process mean shift monitoring and fault identification is proposed in this paper under the assumption of constant variance-covariance matrix. Two DT classifiers based on the C5.0 algorithm are built, one for process monitoring and the other for fault identification. Simulation results show that the proposed model can not only detect the mean shifts but also give information on the variable or subset of variables that cause the out-of-control signals and its/their deviate directions. Finally a bivariate process example is presented and compared with the results of an existing model.</description><identifier>ISSN: 0956-5515</identifier><identifier>EISSN: 1572-8145</identifier><identifier>DOI: 10.1007/s10845-011-0533-5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Analysis ; Business and Management ; Charts ; Control ; Control charts ; Control systems ; Data collection ; Decision trees ; Faults ; Learning ; Machine learning ; Machines ; Manufacturing ; Manufacturing execution systems ; Manufacturing industry ; Mathematical analysis ; Mathematical models ; Mechatronics ; Monitoring ; Normal distribution ; On-line systems ; Principal components analysis ; Process controls ; Process planning ; Processes ; Production ; Robotics ; Statistical process control ; Studies ; Variables</subject><ispartof>Journal of intelligent manufacturing, 2013-02, Vol.24 (1), p.25-34</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-28f7091e01b6ed96255c998adbeb2e987885452f8d8d648a2cb54debd63e90183</citedby><cites>FETCH-LOGICAL-c489t-28f7091e01b6ed96255c998adbeb2e987885452f8d8d648a2cb54debd63e90183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1270345743/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1270345743?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids></links><search><creatorcontrib>He, Shu-Guang</creatorcontrib><creatorcontrib>He, Zhen</creatorcontrib><creatorcontrib>Wang, Gang A.</creatorcontrib><title>Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques</title><title>Journal of intelligent manufacturing</title><addtitle>J Intell Manuf</addtitle><description>With modern data collection system and computers used for on-line process monitoring and fault identification in manufacturing processes, it is common to monitor more than one correlated process variables simultaneously. The main problems in most multivariate control charts (e.g., T 2 charts, MCUSUM charts, MEWMA charts) are that they cannot give direct information on which variable or subset of variables caused the out-of-control signals. A Decision Tree (DT) learning based model for bivariate process mean shift monitoring and fault identification is proposed in this paper under the assumption of constant variance-covariance matrix. Two DT classifiers based on the C5.0 algorithm are built, one for process monitoring and the other for fault identification. Simulation results show that the proposed model can not only detect the mean shifts but also give information on the variable or subset of variables that cause the out-of-control signals and its/their deviate directions. Finally a bivariate process example is presented and compared with the results of an existing model.</description><subject>Analysis</subject><subject>Business and Management</subject><subject>Charts</subject><subject>Control</subject><subject>Control charts</subject><subject>Control systems</subject><subject>Data collection</subject><subject>Decision trees</subject><subject>Faults</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Manufacturing execution systems</subject><subject>Manufacturing industry</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechatronics</subject><subject>Monitoring</subject><subject>Normal distribution</subject><subject>On-line systems</subject><subject>Principal components analysis</subject><subject>Process controls</subject><subject>Process planning</subject><subject>Processes</subject><subject>Production</subject><subject>Robotics</subject><subject>Statistical process control</subject><subject>Studies</subject><subject>Variables</subject><issn>0956-5515</issn><issn>1572-8145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kUFr3DAQhUVJoJukP6A3QS-5OBnJliwdS0jbQCCX5CxkadwoeOWtRg7pv6_N9lAKOQ0M73vzmMfYZwFXAqC_JgGmUw0I0YBq20Z9YDuhetkY0akTtgOrdKOUUB_ZGdELAFijxY69PeQpZeT7Oac6l5R_cp8jH_0yVZ4i5prGFHxNc-bzyPfoM6fnNFbiKfMhvfqSfEV-KHNAIiS-0GYSMSTaoFoQ-YS-5G1dMTzn9GtBumCno58IP_2d5-zp2-3jzY_m_uH73c3X-yZ0xtZGmrEHKxDEoDFaLZUK1hofBxwkWtMbozolRxNN1J3xMgyqizhE3aIFYdpzdnn0XRNud6vbJwo4TT7jvJATCnSrNWi5Sr_8J32Zl5LXdE7IHtpO9V27qsRRFcpMVHB0h5L2vvx2AtzWhTt24dYu3NaFUysjjwwdthdj-cf5XegPbAyN4A</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>He, Shu-Guang</creator><creator>He, Zhen</creator><creator>Wang, Gang A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20130201</creationdate><title>Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques</title><author>He, Shu-Guang ; He, Zhen ; Wang, Gang A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-28f7091e01b6ed96255c998adbeb2e987885452f8d8d648a2cb54debd63e90183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Business and Management</topic><topic>Charts</topic><topic>Control</topic><topic>Control charts</topic><topic>Control systems</topic><topic>Data collection</topic><topic>Decision trees</topic><topic>Faults</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Manufacturing execution systems</topic><topic>Manufacturing industry</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechatronics</topic><topic>Monitoring</topic><topic>Normal distribution</topic><topic>On-line systems</topic><topic>Principal components analysis</topic><topic>Process controls</topic><topic>Process planning</topic><topic>Processes</topic><topic>Production</topic><topic>Robotics</topic><topic>Statistical process control</topic><topic>Studies</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Shu-Guang</creatorcontrib><creatorcontrib>He, Zhen</creatorcontrib><creatorcontrib>Wang, Gang A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Shu-Guang</au><au>He, Zhen</au><au>Wang, Gang A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques</atitle><jtitle>Journal of intelligent manufacturing</jtitle><stitle>J Intell Manuf</stitle><date>2013-02-01</date><risdate>2013</risdate><volume>24</volume><issue>1</issue><spage>25</spage><epage>34</epage><pages>25-34</pages><issn>0956-5515</issn><eissn>1572-8145</eissn><abstract>With modern data collection system and computers used for on-line process monitoring and fault identification in manufacturing processes, it is common to monitor more than one correlated process variables simultaneously. The main problems in most multivariate control charts (e.g., T 2 charts, MCUSUM charts, MEWMA charts) are that they cannot give direct information on which variable or subset of variables caused the out-of-control signals. A Decision Tree (DT) learning based model for bivariate process mean shift monitoring and fault identification is proposed in this paper under the assumption of constant variance-covariance matrix. Two DT classifiers based on the C5.0 algorithm are built, one for process monitoring and the other for fault identification. Simulation results show that the proposed model can not only detect the mean shifts but also give information on the variable or subset of variables that cause the out-of-control signals and its/their deviate directions. Finally a bivariate process example is presented and compared with the results of an existing model.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10845-011-0533-5</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0956-5515
ispartof Journal of intelligent manufacturing, 2013-02, Vol.24 (1), p.25-34
issn 0956-5515
1572-8145
language eng
recordid cdi_proquest_miscellaneous_1506366062
source Business Source Ultimate; ABI/INFORM Global; Springer Nature
subjects Analysis
Business and Management
Charts
Control
Control charts
Control systems
Data collection
Decision trees
Faults
Learning
Machine learning
Machines
Manufacturing
Manufacturing execution systems
Manufacturing industry
Mathematical analysis
Mathematical models
Mechatronics
Monitoring
Normal distribution
On-line systems
Principal components analysis
Process controls
Process planning
Processes
Production
Robotics
Statistical process control
Studies
Variables
title Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A56%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20monitoring%20and%20fault%20identification%20of%20mean%20shifts%20in%20bivariate%20processes%20using%20decision%20tree%20learning%20techniques&rft.jtitle=Journal%20of%20intelligent%20manufacturing&rft.au=He,%20Shu-Guang&rft.date=2013-02-01&rft.volume=24&rft.issue=1&rft.spage=25&rft.epage=34&rft.pages=25-34&rft.issn=0956-5515&rft.eissn=1572-8145&rft_id=info:doi/10.1007/s10845-011-0533-5&rft_dat=%3Cproquest_cross%3E1506366062%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c489t-28f7091e01b6ed96255c998adbeb2e987885452f8d8d648a2cb54debd63e90183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1270345743&rft_id=info:pmid/&rfr_iscdi=true