Loading…
Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques
With modern data collection system and computers used for on-line process monitoring and fault identification in manufacturing processes, it is common to monitor more than one correlated process variables simultaneously. The main problems in most multivariate control charts (e.g., T 2 charts, MCUSUM...
Saved in:
Published in: | Journal of intelligent manufacturing 2013-02, Vol.24 (1), p.25-34 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c489t-28f7091e01b6ed96255c998adbeb2e987885452f8d8d648a2cb54debd63e90183 |
---|---|
cites | cdi_FETCH-LOGICAL-c489t-28f7091e01b6ed96255c998adbeb2e987885452f8d8d648a2cb54debd63e90183 |
container_end_page | 34 |
container_issue | 1 |
container_start_page | 25 |
container_title | Journal of intelligent manufacturing |
container_volume | 24 |
creator | He, Shu-Guang He, Zhen Wang, Gang A. |
description | With modern data collection system and computers used for on-line process monitoring and fault identification in manufacturing processes, it is common to monitor more than one correlated process variables simultaneously. The main problems in most multivariate control charts (e.g.,
T
2
charts, MCUSUM charts, MEWMA charts) are that they cannot give direct information on which variable or subset of variables caused the out-of-control signals. A Decision Tree (DT) learning based model for bivariate process mean shift monitoring and fault identification is proposed in this paper under the assumption of constant variance-covariance matrix. Two DT classifiers based on the C5.0 algorithm are built, one for process monitoring and the other for fault identification. Simulation results show that the proposed model can not only detect the mean shifts but also give information on the variable or subset of variables that cause the out-of-control signals and its/their deviate directions. Finally a bivariate process example is presented and compared with the results of an existing model. |
doi_str_mv | 10.1007/s10845-011-0533-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506366062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1506366062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-28f7091e01b6ed96255c998adbeb2e987885452f8d8d648a2cb54debd63e90183</originalsourceid><addsrcrecordid>eNp1kUFr3DAQhUVJoJukP6A3QS-5OBnJliwdS0jbQCCX5CxkadwoeOWtRg7pv6_N9lAKOQ0M73vzmMfYZwFXAqC_JgGmUw0I0YBq20Z9YDuhetkY0akTtgOrdKOUUB_ZGdELAFijxY69PeQpZeT7Oac6l5R_cp8jH_0yVZ4i5prGFHxNc-bzyPfoM6fnNFbiKfMhvfqSfEV-KHNAIiS-0GYSMSTaoFoQ-YS-5G1dMTzn9GtBumCno58IP_2d5-zp2-3jzY_m_uH73c3X-yZ0xtZGmrEHKxDEoDFaLZUK1hofBxwkWtMbozolRxNN1J3xMgyqizhE3aIFYdpzdnn0XRNud6vbJwo4TT7jvJATCnSrNWi5Sr_8J32Zl5LXdE7IHtpO9V27qsRRFcpMVHB0h5L2vvx2AtzWhTt24dYu3NaFUysjjwwdthdj-cf5XegPbAyN4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1270345743</pqid></control><display><type>article</type><title>Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques</title><source>Business Source Ultimate</source><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>He, Shu-Guang ; He, Zhen ; Wang, Gang A.</creator><creatorcontrib>He, Shu-Guang ; He, Zhen ; Wang, Gang A.</creatorcontrib><description>With modern data collection system and computers used for on-line process monitoring and fault identification in manufacturing processes, it is common to monitor more than one correlated process variables simultaneously. The main problems in most multivariate control charts (e.g.,
T
2
charts, MCUSUM charts, MEWMA charts) are that they cannot give direct information on which variable or subset of variables caused the out-of-control signals. A Decision Tree (DT) learning based model for bivariate process mean shift monitoring and fault identification is proposed in this paper under the assumption of constant variance-covariance matrix. Two DT classifiers based on the C5.0 algorithm are built, one for process monitoring and the other for fault identification. Simulation results show that the proposed model can not only detect the mean shifts but also give information on the variable or subset of variables that cause the out-of-control signals and its/their deviate directions. Finally a bivariate process example is presented and compared with the results of an existing model.</description><identifier>ISSN: 0956-5515</identifier><identifier>EISSN: 1572-8145</identifier><identifier>DOI: 10.1007/s10845-011-0533-5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Analysis ; Business and Management ; Charts ; Control ; Control charts ; Control systems ; Data collection ; Decision trees ; Faults ; Learning ; Machine learning ; Machines ; Manufacturing ; Manufacturing execution systems ; Manufacturing industry ; Mathematical analysis ; Mathematical models ; Mechatronics ; Monitoring ; Normal distribution ; On-line systems ; Principal components analysis ; Process controls ; Process planning ; Processes ; Production ; Robotics ; Statistical process control ; Studies ; Variables</subject><ispartof>Journal of intelligent manufacturing, 2013-02, Vol.24 (1), p.25-34</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-28f7091e01b6ed96255c998adbeb2e987885452f8d8d648a2cb54debd63e90183</citedby><cites>FETCH-LOGICAL-c489t-28f7091e01b6ed96255c998adbeb2e987885452f8d8d648a2cb54debd63e90183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1270345743/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1270345743?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids></links><search><creatorcontrib>He, Shu-Guang</creatorcontrib><creatorcontrib>He, Zhen</creatorcontrib><creatorcontrib>Wang, Gang A.</creatorcontrib><title>Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques</title><title>Journal of intelligent manufacturing</title><addtitle>J Intell Manuf</addtitle><description>With modern data collection system and computers used for on-line process monitoring and fault identification in manufacturing processes, it is common to monitor more than one correlated process variables simultaneously. The main problems in most multivariate control charts (e.g.,
T
2
charts, MCUSUM charts, MEWMA charts) are that they cannot give direct information on which variable or subset of variables caused the out-of-control signals. A Decision Tree (DT) learning based model for bivariate process mean shift monitoring and fault identification is proposed in this paper under the assumption of constant variance-covariance matrix. Two DT classifiers based on the C5.0 algorithm are built, one for process monitoring and the other for fault identification. Simulation results show that the proposed model can not only detect the mean shifts but also give information on the variable or subset of variables that cause the out-of-control signals and its/their deviate directions. Finally a bivariate process example is presented and compared with the results of an existing model.</description><subject>Analysis</subject><subject>Business and Management</subject><subject>Charts</subject><subject>Control</subject><subject>Control charts</subject><subject>Control systems</subject><subject>Data collection</subject><subject>Decision trees</subject><subject>Faults</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Manufacturing execution systems</subject><subject>Manufacturing industry</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechatronics</subject><subject>Monitoring</subject><subject>Normal distribution</subject><subject>On-line systems</subject><subject>Principal components analysis</subject><subject>Process controls</subject><subject>Process planning</subject><subject>Processes</subject><subject>Production</subject><subject>Robotics</subject><subject>Statistical process control</subject><subject>Studies</subject><subject>Variables</subject><issn>0956-5515</issn><issn>1572-8145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kUFr3DAQhUVJoJukP6A3QS-5OBnJliwdS0jbQCCX5CxkadwoeOWtRg7pv6_N9lAKOQ0M73vzmMfYZwFXAqC_JgGmUw0I0YBq20Z9YDuhetkY0akTtgOrdKOUUB_ZGdELAFijxY69PeQpZeT7Oac6l5R_cp8jH_0yVZ4i5prGFHxNc-bzyPfoM6fnNFbiKfMhvfqSfEV-KHNAIiS-0GYSMSTaoFoQ-YS-5G1dMTzn9GtBumCno58IP_2d5-zp2-3jzY_m_uH73c3X-yZ0xtZGmrEHKxDEoDFaLZUK1hofBxwkWtMbozolRxNN1J3xMgyqizhE3aIFYdpzdnn0XRNud6vbJwo4TT7jvJATCnSrNWi5Sr_8J32Zl5LXdE7IHtpO9V27qsRRFcpMVHB0h5L2vvx2AtzWhTt24dYu3NaFUysjjwwdthdj-cf5XegPbAyN4A</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>He, Shu-Guang</creator><creator>He, Zhen</creator><creator>Wang, Gang A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20130201</creationdate><title>Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques</title><author>He, Shu-Guang ; He, Zhen ; Wang, Gang A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-28f7091e01b6ed96255c998adbeb2e987885452f8d8d648a2cb54debd63e90183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Business and Management</topic><topic>Charts</topic><topic>Control</topic><topic>Control charts</topic><topic>Control systems</topic><topic>Data collection</topic><topic>Decision trees</topic><topic>Faults</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Manufacturing execution systems</topic><topic>Manufacturing industry</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechatronics</topic><topic>Monitoring</topic><topic>Normal distribution</topic><topic>On-line systems</topic><topic>Principal components analysis</topic><topic>Process controls</topic><topic>Process planning</topic><topic>Processes</topic><topic>Production</topic><topic>Robotics</topic><topic>Statistical process control</topic><topic>Studies</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Shu-Guang</creatorcontrib><creatorcontrib>He, Zhen</creatorcontrib><creatorcontrib>Wang, Gang A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Shu-Guang</au><au>He, Zhen</au><au>Wang, Gang A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques</atitle><jtitle>Journal of intelligent manufacturing</jtitle><stitle>J Intell Manuf</stitle><date>2013-02-01</date><risdate>2013</risdate><volume>24</volume><issue>1</issue><spage>25</spage><epage>34</epage><pages>25-34</pages><issn>0956-5515</issn><eissn>1572-8145</eissn><abstract>With modern data collection system and computers used for on-line process monitoring and fault identification in manufacturing processes, it is common to monitor more than one correlated process variables simultaneously. The main problems in most multivariate control charts (e.g.,
T
2
charts, MCUSUM charts, MEWMA charts) are that they cannot give direct information on which variable or subset of variables caused the out-of-control signals. A Decision Tree (DT) learning based model for bivariate process mean shift monitoring and fault identification is proposed in this paper under the assumption of constant variance-covariance matrix. Two DT classifiers based on the C5.0 algorithm are built, one for process monitoring and the other for fault identification. Simulation results show that the proposed model can not only detect the mean shifts but also give information on the variable or subset of variables that cause the out-of-control signals and its/their deviate directions. Finally a bivariate process example is presented and compared with the results of an existing model.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10845-011-0533-5</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-5515 |
ispartof | Journal of intelligent manufacturing, 2013-02, Vol.24 (1), p.25-34 |
issn | 0956-5515 1572-8145 |
language | eng |
recordid | cdi_proquest_miscellaneous_1506366062 |
source | Business Source Ultimate; ABI/INFORM Global; Springer Nature |
subjects | Analysis Business and Management Charts Control Control charts Control systems Data collection Decision trees Faults Learning Machine learning Machines Manufacturing Manufacturing execution systems Manufacturing industry Mathematical analysis Mathematical models Mechatronics Monitoring Normal distribution On-line systems Principal components analysis Process controls Process planning Processes Production Robotics Statistical process control Studies Variables |
title | Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A56%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20monitoring%20and%20fault%20identification%20of%20mean%20shifts%20in%20bivariate%20processes%20using%20decision%20tree%20learning%20techniques&rft.jtitle=Journal%20of%20intelligent%20manufacturing&rft.au=He,%20Shu-Guang&rft.date=2013-02-01&rft.volume=24&rft.issue=1&rft.spage=25&rft.epage=34&rft.pages=25-34&rft.issn=0956-5515&rft.eissn=1572-8145&rft_id=info:doi/10.1007/s10845-011-0533-5&rft_dat=%3Cproquest_cross%3E1506366062%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c489t-28f7091e01b6ed96255c998adbeb2e987885452f8d8d648a2cb54debd63e90183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1270345743&rft_id=info:pmid/&rfr_iscdi=true |