Loading…

Surface-Level Path Loss Modeling for Sensor Networks in Flat and Irregular Terrain

Many wireless sensor network applications require sensor nodes to be deployed on the ground or other surfaces. However, there has been little effort to characterize the large- and small-scale path loss for surface-level radio communications. We present a comprehensive measurement of path loss and fa...

Full description

Saved in:
Bibliographic Details
Published in:ACM transactions on sensor networks 2013-03, Vol.9 (2), p.1-32
Main Authors: CHONG, Poh Kit, KIM, Daeyoung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many wireless sensor network applications require sensor nodes to be deployed on the ground or other surfaces. However, there has been little effort to characterize the large- and small-scale path loss for surface-level radio communications. We present a comprehensive measurement of path loss and fading characteriztics for surface-level sensor nodes in the 400 MHz band in both flat and irregular outdoor terrain in an effort to improve the understanding of surface-level sensor network communications performance and to increase the accuracy of sensor network modeling and simulation. Based on our measurement results, we characterize the spatial small-scale area fading effects as a Rician distribution with a distance-dependent K-factor. We also propose a new semi-empirical path loss model for outdoor surface-level wireless sensor networks called the Surface-Level Irregular Terrain (SLIT) model. We verify our model by comparing measurement results with predicted values obtained from high-resolution digital elevation model (DEM) data and computer simulation for the 400 MHz and 2.4 GHz band. Finally, we discuss the impact of the SLIT model and demonstrate through simulation the effects when SLIT is used as the path loss model for existing sensor network protocols.
ISSN:1550-4859
1550-4867
DOI:10.1145/2422966.2422972