Loading…
LES/CMC of Blow-off in a Liquid Fueled Swirl Burner
Large Eddy Simulations of two-phase flames with the Conditional Moment Closure combustion model have been performed for flow conditions corresponding to stable and blow-off regimes in a swirl n-heptane spray burner. In the case of stable flame (i.e. low air velocity), the predicted mean and r.m.s. v...
Saved in:
Published in: | Flow, turbulence and combustion turbulence and combustion, 2014, Vol.92 (1-2), p.237-267 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Large Eddy Simulations of two-phase flames with the Conditional Moment Closure combustion model have been performed for flow conditions corresponding to stable and blow-off regimes in a swirl n-heptane spray burner. In the case of stable flame (i.e. low air velocity), the predicted mean and r.m.s. velocities and the location and shape of the flame agree reasonably well with experiment. In particular, the presence of localised extinctions is captured in agreement with experiment. Using model constants previously calibrated against piloted jet methane flames (Sandia F) with localised extinction, we obtain that at the experimentally determined blow-off velocity of the swirling spray flame, the predicted flame also blows off, demonstrating that the LES-CMC approach can capture the global extinction point in a realistic configuration. |
---|---|
ISSN: | 1386-6184 1573-1987 |
DOI: | 10.1007/s10494-013-9477-5 |