Loading…

Ambient-controlled scanning spreading resistance microscopy measurement and modeling

An ambient-controlled scanning spreading resistance microscopy (AC-SSRM) apparatus is utilized for one-dimensional (1D) and two-dimensional doping profiling measurement. 1D SSRM profiling on a blanket (vertical) B-doped Si wafer is conducted to obtain a spreading resistance profile SR(x). Modeling i...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2013-12, Vol.103 (26)
Main Authors: Qin, Shu, Suo, Zhiyong, Fillmore, David, Lu, Shifeng, Jeff Hu, Y., McTeer, Allen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An ambient-controlled scanning spreading resistance microscopy (AC-SSRM) apparatus is utilized for one-dimensional (1D) and two-dimensional doping profiling measurement. 1D SSRM profiling on a blanket (vertical) B-doped Si wafer is conducted to obtain a spreading resistance profile SR(x). Modeling is used to convert SR(x) to carrier profile n(x). Replacing the average mobility (μ) with a calibration using μ(x), the carrier (hole) profile n(x) is more accurate. This is especially pronounced near the surface and junction depth (xj) and is consistent with the continuous anodic oxidation technique/differential Hall effect (CAOT/DHE) measured carrier profiles. The model based on AC-SSRM data obtained xj = 103.4 nm, which was consistent to secondary ion mass spectrometry results of xj = 104.0 nm. Calibrated hole dose using μ(x) is 9.6 × 1014/cm2 and is relatively closer to DHE hole dose 1.4 × 1015/cm2. In addition, a fairly good consistency of sheet resistance (RS) values among 4 point probe (4PP), CAOT/DHE, and AC-SSRM methods has been demonstrated.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4858963