Loading…

Detecting interaction above digital tabletops using a single depth camera

Digital tabletop environments offer a huge potential to realize application scenarios where multiple users interact simultaneously or aim to solve collaborative tasks. So far, research in this field focuses on touch and tangible interaction, which only takes place on the tabletop’s surface. First ap...

Full description

Saved in:
Bibliographic Details
Published in:Machine vision and applications 2013-11, Vol.24 (8), p.1575-1587
Main Authors: Haubner, Nadia, Schwanecke, Ulrich, Dörner, Ralf, Lehmann, Simon, Luderschmidt, Johannes
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Digital tabletop environments offer a huge potential to realize application scenarios where multiple users interact simultaneously or aim to solve collaborative tasks. So far, research in this field focuses on touch and tangible interaction, which only takes place on the tabletop’s surface. First approaches aim at involving the space above the surface, e.g., by employing freehand gestures. However, these are either limited to specific scenarios or employ obtrusive tracking solutions. In this paper, we propose an approach to unobtrusively segment and detect interaction above a digital surface using a depth sensing camera. To achieve this, we adapt a previously presented approach that segments arms in depth data from a front-view to a top-view setup facilitating the detection of hand positions. Moreover, we propose a novel algorithm to merge segments and give a comparison to the original segmentation algorithm. Since the algorithm involves a large number of parameters, estimating the optimal configuration is necessary. To accomplish this, we describe a low effort approach to estimate the parameter configuration based on simulated annealing. An evaluation of our system to detect hands shows that a repositioning precision of approximately 1 cm is achieved. This accuracy is sufficient to reliably realize interaction metaphors above a surface.
ISSN:0932-8092
1432-1769
DOI:10.1007/s00138-013-0538-5