Loading…

Almost sure asymptotic stability of an oscillator with delay feedback when excited by finite-state Markov noise

An oscillator of the form q¨(t)+2ζq˙(t)+q(t)=−κ[q(t)−q(t−r)] is unstable when the strength of the feedback (κ) is greater than a critical value (κc). Oscillations of constant amplitude persist when κ=κc. We study the almost-sure asymptotic stability of the oscillator when κ=κc and the system is exci...

Full description

Saved in:
Bibliographic Details
Published in:Probabilistic engineering mechanics 2013-04, Vol.32, p.21-30
Main Authors: Lingala, Nishanth, Sri Namachchivaya, N., O'Reilly, Oliver M., Wihstutz, Volker
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c387t-b02e36cb4dc1de474ab1c271c02a26192d3681733be65613f1e0f93d88b653c73
cites cdi_FETCH-LOGICAL-c387t-b02e36cb4dc1de474ab1c271c02a26192d3681733be65613f1e0f93d88b653c73
container_end_page 30
container_issue
container_start_page 21
container_title Probabilistic engineering mechanics
container_volume 32
creator Lingala, Nishanth
Sri Namachchivaya, N.
O'Reilly, Oliver M.
Wihstutz, Volker
description An oscillator of the form q¨(t)+2ζq˙(t)+q(t)=−κ[q(t)−q(t−r)] is unstable when the strength of the feedback (κ) is greater than a critical value (κc). Oscillations of constant amplitude persist when κ=κc. We study the almost-sure asymptotic stability of the oscillator when κ=κc and the system is excited by a two-state Markov noise. For small intensity noise, we construct an asymptotic expansion for the maximal Lyapunov exponent. ► First non-zero term in the asymptotic expansion of the maximal Lyapunov exponent. ► Oscillator with delay feedback can be stabilized by multiplicative noise. ► Chatter suppression in machining using random perturbations of structural parameters.
doi_str_mv 10.1016/j.probengmech.2012.12.008
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506385373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S026689201200063X</els_id><sourcerecordid>1365153995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-b02e36cb4dc1de474ab1c271c02a26192d3681733be65613f1e0f93d88b653c73</originalsourceid><addsrcrecordid>eNqNUctqHDEQFMGBbOz8g3LLZTZqaUajOZoljgM2vthnoUdPVuuZ0UbS2t6_j8zmkJsNDd3QVQVVRchXYGtgIL_v1vsULS6_Z3TbNWfA13UYUx_IClSvmpb33RlZMS5lowbOPpHPOe8Ygx7aYUXi5TTHXGg-JKQmH-d9iSU4mouxYQrlSONIzUJjdmGaTImJPoeypR4nc6QjorfGPdLnLS4UX1wo6Kmtj7DUs6kqBemtSY_xiS4xZLwgH0czZfzyb5-Th6sf95vr5ubu56_N5U3jhOpLYxlHIZ1tvQOPbd8aC4734Bg3XMLAvZAKeiEsyk6CGAHZOAivlJWdcL04J99OujWePwfMRc8hO6wWFoyHrKFjUqhOVIk3oUJ20Ilh6Cp0OEFdijknHPU-hdmkowamX_vQO_1fH_q1D12n9lG5mxMXq-2ngEnXSHFx6ENCV7SP4R0qfwE5VJso</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365153995</pqid></control><display><type>article</type><title>Almost sure asymptotic stability of an oscillator with delay feedback when excited by finite-state Markov noise</title><source>ScienceDirect Freedom Collection</source><creator>Lingala, Nishanth ; Sri Namachchivaya, N. ; O'Reilly, Oliver M. ; Wihstutz, Volker</creator><creatorcontrib>Lingala, Nishanth ; Sri Namachchivaya, N. ; O'Reilly, Oliver M. ; Wihstutz, Volker</creatorcontrib><description>An oscillator of the form q¨(t)+2ζq˙(t)+q(t)=−κ[q(t)−q(t−r)] is unstable when the strength of the feedback (κ) is greater than a critical value (κc). Oscillations of constant amplitude persist when κ=κc. We study the almost-sure asymptotic stability of the oscillator when κ=κc and the system is excited by a two-state Markov noise. For small intensity noise, we construct an asymptotic expansion for the maximal Lyapunov exponent. ► First non-zero term in the asymptotic expansion of the maximal Lyapunov exponent. ► Oscillator with delay feedback can be stabilized by multiplicative noise. ► Chatter suppression in machining using random perturbations of structural parameters.</description><identifier>ISSN: 0266-8920</identifier><identifier>EISSN: 1878-4275</identifier><identifier>DOI: 10.1016/j.probengmech.2012.12.008</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Almost-sure stability ; Asymptotic properties ; Chatter ; Delay differential equation ; Excitation ; Feedback ; Lyapunov exponent ; Markov processes ; Noise ; Oscillations ; Oscillators ; Stability</subject><ispartof>Probabilistic engineering mechanics, 2013-04, Vol.32, p.21-30</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-b02e36cb4dc1de474ab1c271c02a26192d3681733be65613f1e0f93d88b653c73</citedby><cites>FETCH-LOGICAL-c387t-b02e36cb4dc1de474ab1c271c02a26192d3681733be65613f1e0f93d88b653c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Lingala, Nishanth</creatorcontrib><creatorcontrib>Sri Namachchivaya, N.</creatorcontrib><creatorcontrib>O'Reilly, Oliver M.</creatorcontrib><creatorcontrib>Wihstutz, Volker</creatorcontrib><title>Almost sure asymptotic stability of an oscillator with delay feedback when excited by finite-state Markov noise</title><title>Probabilistic engineering mechanics</title><description>An oscillator of the form q¨(t)+2ζq˙(t)+q(t)=−κ[q(t)−q(t−r)] is unstable when the strength of the feedback (κ) is greater than a critical value (κc). Oscillations of constant amplitude persist when κ=κc. We study the almost-sure asymptotic stability of the oscillator when κ=κc and the system is excited by a two-state Markov noise. For small intensity noise, we construct an asymptotic expansion for the maximal Lyapunov exponent. ► First non-zero term in the asymptotic expansion of the maximal Lyapunov exponent. ► Oscillator with delay feedback can be stabilized by multiplicative noise. ► Chatter suppression in machining using random perturbations of structural parameters.</description><subject>Almost-sure stability</subject><subject>Asymptotic properties</subject><subject>Chatter</subject><subject>Delay differential equation</subject><subject>Excitation</subject><subject>Feedback</subject><subject>Lyapunov exponent</subject><subject>Markov processes</subject><subject>Noise</subject><subject>Oscillations</subject><subject>Oscillators</subject><subject>Stability</subject><issn>0266-8920</issn><issn>1878-4275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNUctqHDEQFMGBbOz8g3LLZTZqaUajOZoljgM2vthnoUdPVuuZ0UbS2t6_j8zmkJsNDd3QVQVVRchXYGtgIL_v1vsULS6_Z3TbNWfA13UYUx_IClSvmpb33RlZMS5lowbOPpHPOe8Ygx7aYUXi5TTHXGg-JKQmH-d9iSU4mouxYQrlSONIzUJjdmGaTImJPoeypR4nc6QjorfGPdLnLS4UX1wo6Kmtj7DUs6kqBemtSY_xiS4xZLwgH0czZfzyb5-Th6sf95vr5ubu56_N5U3jhOpLYxlHIZ1tvQOPbd8aC4734Bg3XMLAvZAKeiEsyk6CGAHZOAivlJWdcL04J99OujWePwfMRc8hO6wWFoyHrKFjUqhOVIk3oUJ20Ilh6Cp0OEFdijknHPU-hdmkowamX_vQO_1fH_q1D12n9lG5mxMXq-2ngEnXSHFx6ENCV7SP4R0qfwE5VJso</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Lingala, Nishanth</creator><creator>Sri Namachchivaya, N.</creator><creator>O'Reilly, Oliver M.</creator><creator>Wihstutz, Volker</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130401</creationdate><title>Almost sure asymptotic stability of an oscillator with delay feedback when excited by finite-state Markov noise</title><author>Lingala, Nishanth ; Sri Namachchivaya, N. ; O'Reilly, Oliver M. ; Wihstutz, Volker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-b02e36cb4dc1de474ab1c271c02a26192d3681733be65613f1e0f93d88b653c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Almost-sure stability</topic><topic>Asymptotic properties</topic><topic>Chatter</topic><topic>Delay differential equation</topic><topic>Excitation</topic><topic>Feedback</topic><topic>Lyapunov exponent</topic><topic>Markov processes</topic><topic>Noise</topic><topic>Oscillations</topic><topic>Oscillators</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lingala, Nishanth</creatorcontrib><creatorcontrib>Sri Namachchivaya, N.</creatorcontrib><creatorcontrib>O'Reilly, Oliver M.</creatorcontrib><creatorcontrib>Wihstutz, Volker</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Probabilistic engineering mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lingala, Nishanth</au><au>Sri Namachchivaya, N.</au><au>O'Reilly, Oliver M.</au><au>Wihstutz, Volker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Almost sure asymptotic stability of an oscillator with delay feedback when excited by finite-state Markov noise</atitle><jtitle>Probabilistic engineering mechanics</jtitle><date>2013-04-01</date><risdate>2013</risdate><volume>32</volume><spage>21</spage><epage>30</epage><pages>21-30</pages><issn>0266-8920</issn><eissn>1878-4275</eissn><abstract>An oscillator of the form q¨(t)+2ζq˙(t)+q(t)=−κ[q(t)−q(t−r)] is unstable when the strength of the feedback (κ) is greater than a critical value (κc). Oscillations of constant amplitude persist when κ=κc. We study the almost-sure asymptotic stability of the oscillator when κ=κc and the system is excited by a two-state Markov noise. For small intensity noise, we construct an asymptotic expansion for the maximal Lyapunov exponent. ► First non-zero term in the asymptotic expansion of the maximal Lyapunov exponent. ► Oscillator with delay feedback can be stabilized by multiplicative noise. ► Chatter suppression in machining using random perturbations of structural parameters.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.probengmech.2012.12.008</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-8920
ispartof Probabilistic engineering mechanics, 2013-04, Vol.32, p.21-30
issn 0266-8920
1878-4275
language eng
recordid cdi_proquest_miscellaneous_1506385373
source ScienceDirect Freedom Collection
subjects Almost-sure stability
Asymptotic properties
Chatter
Delay differential equation
Excitation
Feedback
Lyapunov exponent
Markov processes
Noise
Oscillations
Oscillators
Stability
title Almost sure asymptotic stability of an oscillator with delay feedback when excited by finite-state Markov noise
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A59%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Almost%20sure%20asymptotic%20stability%20of%20an%20oscillator%20with%20delay%20feedback%20when%20excited%20by%20finite-state%20Markov%20noise&rft.jtitle=Probabilistic%20engineering%20mechanics&rft.au=Lingala,%20Nishanth&rft.date=2013-04-01&rft.volume=32&rft.spage=21&rft.epage=30&rft.pages=21-30&rft.issn=0266-8920&rft.eissn=1878-4275&rft_id=info:doi/10.1016/j.probengmech.2012.12.008&rft_dat=%3Cproquest_cross%3E1365153995%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-b02e36cb4dc1de474ab1c271c02a26192d3681733be65613f1e0f93d88b653c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1365153995&rft_id=info:pmid/&rfr_iscdi=true