Loading…
Almost sure asymptotic stability of an oscillator with delay feedback when excited by finite-state Markov noise
An oscillator of the form q¨(t)+2ζq˙(t)+q(t)=−κ[q(t)−q(t−r)] is unstable when the strength of the feedback (κ) is greater than a critical value (κc). Oscillations of constant amplitude persist when κ=κc. We study the almost-sure asymptotic stability of the oscillator when κ=κc and the system is exci...
Saved in:
Published in: | Probabilistic engineering mechanics 2013-04, Vol.32, p.21-30 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c387t-b02e36cb4dc1de474ab1c271c02a26192d3681733be65613f1e0f93d88b653c73 |
---|---|
cites | cdi_FETCH-LOGICAL-c387t-b02e36cb4dc1de474ab1c271c02a26192d3681733be65613f1e0f93d88b653c73 |
container_end_page | 30 |
container_issue | |
container_start_page | 21 |
container_title | Probabilistic engineering mechanics |
container_volume | 32 |
creator | Lingala, Nishanth Sri Namachchivaya, N. O'Reilly, Oliver M. Wihstutz, Volker |
description | An oscillator of the form q¨(t)+2ζq˙(t)+q(t)=−κ[q(t)−q(t−r)] is unstable when the strength of the feedback (κ) is greater than a critical value (κc). Oscillations of constant amplitude persist when κ=κc. We study the almost-sure asymptotic stability of the oscillator when κ=κc and the system is excited by a two-state Markov noise. For small intensity noise, we construct an asymptotic expansion for the maximal Lyapunov exponent.
► First non-zero term in the asymptotic expansion of the maximal Lyapunov exponent. ► Oscillator with delay feedback can be stabilized by multiplicative noise. ► Chatter suppression in machining using random perturbations of structural parameters. |
doi_str_mv | 10.1016/j.probengmech.2012.12.008 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506385373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S026689201200063X</els_id><sourcerecordid>1365153995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-b02e36cb4dc1de474ab1c271c02a26192d3681733be65613f1e0f93d88b653c73</originalsourceid><addsrcrecordid>eNqNUctqHDEQFMGBbOz8g3LLZTZqaUajOZoljgM2vthnoUdPVuuZ0UbS2t6_j8zmkJsNDd3QVQVVRchXYGtgIL_v1vsULS6_Z3TbNWfA13UYUx_IClSvmpb33RlZMS5lowbOPpHPOe8Ygx7aYUXi5TTHXGg-JKQmH-d9iSU4mouxYQrlSONIzUJjdmGaTImJPoeypR4nc6QjorfGPdLnLS4UX1wo6Kmtj7DUs6kqBemtSY_xiS4xZLwgH0czZfzyb5-Th6sf95vr5ubu56_N5U3jhOpLYxlHIZ1tvQOPbd8aC4734Bg3XMLAvZAKeiEsyk6CGAHZOAivlJWdcL04J99OujWePwfMRc8hO6wWFoyHrKFjUqhOVIk3oUJ20Ilh6Cp0OEFdijknHPU-hdmkowamX_vQO_1fH_q1D12n9lG5mxMXq-2ngEnXSHFx6ENCV7SP4R0qfwE5VJso</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365153995</pqid></control><display><type>article</type><title>Almost sure asymptotic stability of an oscillator with delay feedback when excited by finite-state Markov noise</title><source>ScienceDirect Freedom Collection</source><creator>Lingala, Nishanth ; Sri Namachchivaya, N. ; O'Reilly, Oliver M. ; Wihstutz, Volker</creator><creatorcontrib>Lingala, Nishanth ; Sri Namachchivaya, N. ; O'Reilly, Oliver M. ; Wihstutz, Volker</creatorcontrib><description>An oscillator of the form q¨(t)+2ζq˙(t)+q(t)=−κ[q(t)−q(t−r)] is unstable when the strength of the feedback (κ) is greater than a critical value (κc). Oscillations of constant amplitude persist when κ=κc. We study the almost-sure asymptotic stability of the oscillator when κ=κc and the system is excited by a two-state Markov noise. For small intensity noise, we construct an asymptotic expansion for the maximal Lyapunov exponent.
► First non-zero term in the asymptotic expansion of the maximal Lyapunov exponent. ► Oscillator with delay feedback can be stabilized by multiplicative noise. ► Chatter suppression in machining using random perturbations of structural parameters.</description><identifier>ISSN: 0266-8920</identifier><identifier>EISSN: 1878-4275</identifier><identifier>DOI: 10.1016/j.probengmech.2012.12.008</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Almost-sure stability ; Asymptotic properties ; Chatter ; Delay differential equation ; Excitation ; Feedback ; Lyapunov exponent ; Markov processes ; Noise ; Oscillations ; Oscillators ; Stability</subject><ispartof>Probabilistic engineering mechanics, 2013-04, Vol.32, p.21-30</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-b02e36cb4dc1de474ab1c271c02a26192d3681733be65613f1e0f93d88b653c73</citedby><cites>FETCH-LOGICAL-c387t-b02e36cb4dc1de474ab1c271c02a26192d3681733be65613f1e0f93d88b653c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Lingala, Nishanth</creatorcontrib><creatorcontrib>Sri Namachchivaya, N.</creatorcontrib><creatorcontrib>O'Reilly, Oliver M.</creatorcontrib><creatorcontrib>Wihstutz, Volker</creatorcontrib><title>Almost sure asymptotic stability of an oscillator with delay feedback when excited by finite-state Markov noise</title><title>Probabilistic engineering mechanics</title><description>An oscillator of the form q¨(t)+2ζq˙(t)+q(t)=−κ[q(t)−q(t−r)] is unstable when the strength of the feedback (κ) is greater than a critical value (κc). Oscillations of constant amplitude persist when κ=κc. We study the almost-sure asymptotic stability of the oscillator when κ=κc and the system is excited by a two-state Markov noise. For small intensity noise, we construct an asymptotic expansion for the maximal Lyapunov exponent.
► First non-zero term in the asymptotic expansion of the maximal Lyapunov exponent. ► Oscillator with delay feedback can be stabilized by multiplicative noise. ► Chatter suppression in machining using random perturbations of structural parameters.</description><subject>Almost-sure stability</subject><subject>Asymptotic properties</subject><subject>Chatter</subject><subject>Delay differential equation</subject><subject>Excitation</subject><subject>Feedback</subject><subject>Lyapunov exponent</subject><subject>Markov processes</subject><subject>Noise</subject><subject>Oscillations</subject><subject>Oscillators</subject><subject>Stability</subject><issn>0266-8920</issn><issn>1878-4275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNUctqHDEQFMGBbOz8g3LLZTZqaUajOZoljgM2vthnoUdPVuuZ0UbS2t6_j8zmkJsNDd3QVQVVRchXYGtgIL_v1vsULS6_Z3TbNWfA13UYUx_IClSvmpb33RlZMS5lowbOPpHPOe8Ygx7aYUXi5TTHXGg-JKQmH-d9iSU4mouxYQrlSONIzUJjdmGaTImJPoeypR4nc6QjorfGPdLnLS4UX1wo6Kmtj7DUs6kqBemtSY_xiS4xZLwgH0czZfzyb5-Th6sf95vr5ubu56_N5U3jhOpLYxlHIZ1tvQOPbd8aC4734Bg3XMLAvZAKeiEsyk6CGAHZOAivlJWdcL04J99OujWePwfMRc8hO6wWFoyHrKFjUqhOVIk3oUJ20Ilh6Cp0OEFdijknHPU-hdmkowamX_vQO_1fH_q1D12n9lG5mxMXq-2ngEnXSHFx6ENCV7SP4R0qfwE5VJso</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Lingala, Nishanth</creator><creator>Sri Namachchivaya, N.</creator><creator>O'Reilly, Oliver M.</creator><creator>Wihstutz, Volker</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130401</creationdate><title>Almost sure asymptotic stability of an oscillator with delay feedback when excited by finite-state Markov noise</title><author>Lingala, Nishanth ; Sri Namachchivaya, N. ; O'Reilly, Oliver M. ; Wihstutz, Volker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-b02e36cb4dc1de474ab1c271c02a26192d3681733be65613f1e0f93d88b653c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Almost-sure stability</topic><topic>Asymptotic properties</topic><topic>Chatter</topic><topic>Delay differential equation</topic><topic>Excitation</topic><topic>Feedback</topic><topic>Lyapunov exponent</topic><topic>Markov processes</topic><topic>Noise</topic><topic>Oscillations</topic><topic>Oscillators</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lingala, Nishanth</creatorcontrib><creatorcontrib>Sri Namachchivaya, N.</creatorcontrib><creatorcontrib>O'Reilly, Oliver M.</creatorcontrib><creatorcontrib>Wihstutz, Volker</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Probabilistic engineering mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lingala, Nishanth</au><au>Sri Namachchivaya, N.</au><au>O'Reilly, Oliver M.</au><au>Wihstutz, Volker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Almost sure asymptotic stability of an oscillator with delay feedback when excited by finite-state Markov noise</atitle><jtitle>Probabilistic engineering mechanics</jtitle><date>2013-04-01</date><risdate>2013</risdate><volume>32</volume><spage>21</spage><epage>30</epage><pages>21-30</pages><issn>0266-8920</issn><eissn>1878-4275</eissn><abstract>An oscillator of the form q¨(t)+2ζq˙(t)+q(t)=−κ[q(t)−q(t−r)] is unstable when the strength of the feedback (κ) is greater than a critical value (κc). Oscillations of constant amplitude persist when κ=κc. We study the almost-sure asymptotic stability of the oscillator when κ=κc and the system is excited by a two-state Markov noise. For small intensity noise, we construct an asymptotic expansion for the maximal Lyapunov exponent.
► First non-zero term in the asymptotic expansion of the maximal Lyapunov exponent. ► Oscillator with delay feedback can be stabilized by multiplicative noise. ► Chatter suppression in machining using random perturbations of structural parameters.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.probengmech.2012.12.008</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-8920 |
ispartof | Probabilistic engineering mechanics, 2013-04, Vol.32, p.21-30 |
issn | 0266-8920 1878-4275 |
language | eng |
recordid | cdi_proquest_miscellaneous_1506385373 |
source | ScienceDirect Freedom Collection |
subjects | Almost-sure stability Asymptotic properties Chatter Delay differential equation Excitation Feedback Lyapunov exponent Markov processes Noise Oscillations Oscillators Stability |
title | Almost sure asymptotic stability of an oscillator with delay feedback when excited by finite-state Markov noise |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A59%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Almost%20sure%20asymptotic%20stability%20of%20an%20oscillator%20with%20delay%20feedback%20when%20excited%20by%20finite-state%20Markov%20noise&rft.jtitle=Probabilistic%20engineering%20mechanics&rft.au=Lingala,%20Nishanth&rft.date=2013-04-01&rft.volume=32&rft.spage=21&rft.epage=30&rft.pages=21-30&rft.issn=0266-8920&rft.eissn=1878-4275&rft_id=info:doi/10.1016/j.probengmech.2012.12.008&rft_dat=%3Cproquest_cross%3E1365153995%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-b02e36cb4dc1de474ab1c271c02a26192d3681733be65613f1e0f93d88b653c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1365153995&rft_id=info:pmid/&rfr_iscdi=true |