Loading…

Reducing the Energy Demand of Cellulosic Ethanol through Salt Extractive Distillation Enabled by Electrodialysis

One of the main challenges when a biochemical conversion technique is employed to produce cellulosic ethanol is the low concentration of ethanol in the fermentation broth, which increases the energy demand for recovering and purifying ethanol to fuel grade. In this study, two design cases implementi...

Full description

Saved in:
Bibliographic Details
Published in:Separation science and technology 2013-05, Vol.48 (10), p.1518-1528
Main Authors: Hussain, Mohammed A. M., Pfromm, Peter H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c419t-2f71a87c8f0cc8efa53e68cd854113270a9c4ab37fff37e6a51845708737f0003
cites cdi_FETCH-LOGICAL-c419t-2f71a87c8f0cc8efa53e68cd854113270a9c4ab37fff37e6a51845708737f0003
container_end_page 1528
container_issue 10
container_start_page 1518
container_title Separation science and technology
container_volume 48
creator Hussain, Mohammed A. M.
Pfromm, Peter H.
description One of the main challenges when a biochemical conversion technique is employed to produce cellulosic ethanol is the low concentration of ethanol in the fermentation broth, which increases the energy demand for recovering and purifying ethanol to fuel grade. In this study, two design cases implementing salt extractive distillation-with salt recovery enabled by a novel scheme of electrodialysis and spray drying-along with heat integrated distillation techniques of double-effect distillation and direct vapor recompression are investigated through process simulation with Aspen Plus® 2006.5 for reducing the thermal energy demand. Conventional distillation along with molecular sieve based dehydration is considered as the base case. Salt extractive distillation along with direct vapor recompression is found to be the most economical ethanol recovery approach for cellulosic ethanol with a thermal energy demand of 7.1 MJ/L (natural gas energy equivalents, higher heating value), which corresponds to a thermal energy savings of 23% and cost savings of 12% relative to the base case separation train thermal energy demand and total annual cost.
doi_str_mv 10.1080/01496395.2013.766211
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506385633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671574006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-2f71a87c8f0cc8efa53e68cd854113270a9c4ab37fff37e6a51845708737f0003</originalsourceid><addsrcrecordid>eNqFkU1r3DAURUVJoZNp_0EXWmbjqWRZlrwKYcZpAoFAP9bijSzNqGisiSSn9b-vjZNtsnrwOPfC5SD0lZINJZJ8I7RqatbwTUko24i6Lin9gFaUl6TgglcXaDUjxcx8Qpcp_SGESN40K3T-YbpBu_6A89HgtjfxMOKdOUHf4WDx1ng_-JCcxm0-Qh_8xMUwHI74J_iM2385gs7u2eCdS9l5D9mFfiqCvTcd3o-49UbnGDoHfkwufUYfLfhkvrzcNfp92_7a3hUPj9_vtzcPha5ok4vSCgpSaGmJ1tJY4MzUUneSV5SyUhBodAV7Jqy1TJgaOJUVF0SK6TWtY2t0tfSeY3gaTMrq5JKe5kBvwpAUrQXloiKkfh_lEyR5zdiEVguqY0gpGqvO0Z0gjooSNbtQry7U7EItLqbY9RJzvQ3xBH9D9J3KMPoQbYReu6TYmw3_AXpXkJc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506385633</pqid></control><display><type>article</type><title>Reducing the Energy Demand of Cellulosic Ethanol through Salt Extractive Distillation Enabled by Electrodialysis</title><source>Taylor and Francis Science and Technology Collection</source><creator>Hussain, Mohammed A. M. ; Pfromm, Peter H.</creator><creatorcontrib>Hussain, Mohammed A. M. ; Pfromm, Peter H.</creatorcontrib><description>One of the main challenges when a biochemical conversion technique is employed to produce cellulosic ethanol is the low concentration of ethanol in the fermentation broth, which increases the energy demand for recovering and purifying ethanol to fuel grade. In this study, two design cases implementing salt extractive distillation-with salt recovery enabled by a novel scheme of electrodialysis and spray drying-along with heat integrated distillation techniques of double-effect distillation and direct vapor recompression are investigated through process simulation with Aspen Plus® 2006.5 for reducing the thermal energy demand. Conventional distillation along with molecular sieve based dehydration is considered as the base case. Salt extractive distillation along with direct vapor recompression is found to be the most economical ethanol recovery approach for cellulosic ethanol with a thermal energy demand of 7.1 MJ/L (natural gas energy equivalents, higher heating value), which corresponds to a thermal energy savings of 23% and cost savings of 12% relative to the base case separation train thermal energy demand and total annual cost.</description><identifier>ISSN: 0149-6395</identifier><identifier>EISSN: 1520-5754</identifier><identifier>DOI: 10.1080/01496395.2013.766211</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><subject>cellulosic ; Cost engineering ; Demand ; Demand (economics) ; Distillation ; electrodialysis ; Ethanol ; Ethyl alcohol ; salt extractive ; Separation ; Thermal energy</subject><ispartof>Separation science and technology, 2013-05, Vol.48 (10), p.1518-1528</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-2f71a87c8f0cc8efa53e68cd854113270a9c4ab37fff37e6a51845708737f0003</citedby><cites>FETCH-LOGICAL-c419t-2f71a87c8f0cc8efa53e68cd854113270a9c4ab37fff37e6a51845708737f0003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Hussain, Mohammed A. M.</creatorcontrib><creatorcontrib>Pfromm, Peter H.</creatorcontrib><title>Reducing the Energy Demand of Cellulosic Ethanol through Salt Extractive Distillation Enabled by Electrodialysis</title><title>Separation science and technology</title><description>One of the main challenges when a biochemical conversion technique is employed to produce cellulosic ethanol is the low concentration of ethanol in the fermentation broth, which increases the energy demand for recovering and purifying ethanol to fuel grade. In this study, two design cases implementing salt extractive distillation-with salt recovery enabled by a novel scheme of electrodialysis and spray drying-along with heat integrated distillation techniques of double-effect distillation and direct vapor recompression are investigated through process simulation with Aspen Plus® 2006.5 for reducing the thermal energy demand. Conventional distillation along with molecular sieve based dehydration is considered as the base case. Salt extractive distillation along with direct vapor recompression is found to be the most economical ethanol recovery approach for cellulosic ethanol with a thermal energy demand of 7.1 MJ/L (natural gas energy equivalents, higher heating value), which corresponds to a thermal energy savings of 23% and cost savings of 12% relative to the base case separation train thermal energy demand and total annual cost.</description><subject>cellulosic</subject><subject>Cost engineering</subject><subject>Demand</subject><subject>Demand (economics)</subject><subject>Distillation</subject><subject>electrodialysis</subject><subject>Ethanol</subject><subject>Ethyl alcohol</subject><subject>salt extractive</subject><subject>Separation</subject><subject>Thermal energy</subject><issn>0149-6395</issn><issn>1520-5754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkU1r3DAURUVJoZNp_0EXWmbjqWRZlrwKYcZpAoFAP9bijSzNqGisiSSn9b-vjZNtsnrwOPfC5SD0lZINJZJ8I7RqatbwTUko24i6Lin9gFaUl6TgglcXaDUjxcx8Qpcp_SGESN40K3T-YbpBu_6A89HgtjfxMOKdOUHf4WDx1ng_-JCcxm0-Qh_8xMUwHI74J_iM2385gs7u2eCdS9l5D9mFfiqCvTcd3o-49UbnGDoHfkwufUYfLfhkvrzcNfp92_7a3hUPj9_vtzcPha5ok4vSCgpSaGmJ1tJY4MzUUneSV5SyUhBodAV7Jqy1TJgaOJUVF0SK6TWtY2t0tfSeY3gaTMrq5JKe5kBvwpAUrQXloiKkfh_lEyR5zdiEVguqY0gpGqvO0Z0gjooSNbtQry7U7EItLqbY9RJzvQ3xBH9D9J3KMPoQbYReu6TYmw3_AXpXkJc</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Hussain, Mohammed A. M.</creator><creator>Pfromm, Peter H.</creator><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20130501</creationdate><title>Reducing the Energy Demand of Cellulosic Ethanol through Salt Extractive Distillation Enabled by Electrodialysis</title><author>Hussain, Mohammed A. M. ; Pfromm, Peter H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-2f71a87c8f0cc8efa53e68cd854113270a9c4ab37fff37e6a51845708737f0003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>cellulosic</topic><topic>Cost engineering</topic><topic>Demand</topic><topic>Demand (economics)</topic><topic>Distillation</topic><topic>electrodialysis</topic><topic>Ethanol</topic><topic>Ethyl alcohol</topic><topic>salt extractive</topic><topic>Separation</topic><topic>Thermal energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussain, Mohammed A. M.</creatorcontrib><creatorcontrib>Pfromm, Peter H.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Separation science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussain, Mohammed A. M.</au><au>Pfromm, Peter H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing the Energy Demand of Cellulosic Ethanol through Salt Extractive Distillation Enabled by Electrodialysis</atitle><jtitle>Separation science and technology</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>48</volume><issue>10</issue><spage>1518</spage><epage>1528</epage><pages>1518-1528</pages><issn>0149-6395</issn><eissn>1520-5754</eissn><abstract>One of the main challenges when a biochemical conversion technique is employed to produce cellulosic ethanol is the low concentration of ethanol in the fermentation broth, which increases the energy demand for recovering and purifying ethanol to fuel grade. In this study, two design cases implementing salt extractive distillation-with salt recovery enabled by a novel scheme of electrodialysis and spray drying-along with heat integrated distillation techniques of double-effect distillation and direct vapor recompression are investigated through process simulation with Aspen Plus® 2006.5 for reducing the thermal energy demand. Conventional distillation along with molecular sieve based dehydration is considered as the base case. Salt extractive distillation along with direct vapor recompression is found to be the most economical ethanol recovery approach for cellulosic ethanol with a thermal energy demand of 7.1 MJ/L (natural gas energy equivalents, higher heating value), which corresponds to a thermal energy savings of 23% and cost savings of 12% relative to the base case separation train thermal energy demand and total annual cost.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/01496395.2013.766211</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0149-6395
ispartof Separation science and technology, 2013-05, Vol.48 (10), p.1518-1528
issn 0149-6395
1520-5754
language eng
recordid cdi_proquest_miscellaneous_1506385633
source Taylor and Francis Science and Technology Collection
subjects cellulosic
Cost engineering
Demand
Demand (economics)
Distillation
electrodialysis
Ethanol
Ethyl alcohol
salt extractive
Separation
Thermal energy
title Reducing the Energy Demand of Cellulosic Ethanol through Salt Extractive Distillation Enabled by Electrodialysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A34%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20the%20Energy%20Demand%20of%20Cellulosic%20Ethanol%20through%20Salt%20Extractive%20Distillation%20Enabled%20by%20Electrodialysis&rft.jtitle=Separation%20science%20and%20technology&rft.au=Hussain,%20Mohammed%20A.%20M.&rft.date=2013-05-01&rft.volume=48&rft.issue=10&rft.spage=1518&rft.epage=1528&rft.pages=1518-1528&rft.issn=0149-6395&rft.eissn=1520-5754&rft_id=info:doi/10.1080/01496395.2013.766211&rft_dat=%3Cproquest_cross%3E1671574006%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c419t-2f71a87c8f0cc8efa53e68cd854113270a9c4ab37fff37e6a51845708737f0003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1506385633&rft_id=info:pmid/&rfr_iscdi=true