Loading…
Fair lateness scheduling: reducing maximum lateness in G-EDF-like scheduling
In prior work on soft real-time (SRT) multiprocessor scheduling, tardiness bounds have been derived for a variety of scheduling algorithms, most notably, the global earliest-deadline-first (G-EDF) algorithm. In this paper, we devise G-EDF-like (GEL) schedulers, which have identical implementations t...
Saved in:
Published in: | Real-time systems 2014, Vol.50 (1), p.5-47 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In prior work on soft real-time (SRT) multiprocessor scheduling, tardiness bounds have been derived for a variety of scheduling algorithms, most notably, the global earliest-deadline-first (G-EDF) algorithm. In this paper, we devise G-EDF-like (GEL) schedulers, which have identical implementations to G-EDF and therefore the same overheads, but that provide better tardiness bounds. We discuss how to analyze these schedulers and propose methods to determine scheduler parameters to meet several different tardiness bound criteria. We employ linear programs to adjust such parameters to optimize arbitrary tardiness criteria, and to analyze lateness bounds (lateness is related to tardiness). We also propose a particular scheduling algorithm, namely the global fair lateness (G-FL) algorithm, to minimize maximum absolute lateness bounds. Unlike the other schedulers described in this paper, G-FL only requires linear programming for analysis. We argue that our proposed schedulers, such as G-FL, should replace G-EDF for SRT applications. |
---|---|
ISSN: | 0922-6443 1573-1383 |
DOI: | 10.1007/s11241-013-9190-4 |