Loading…

Heat conduction in a functionally graded medium with an arbitrarily oriented crack

To characterize the influence of cracking defect on the heat conduction in a functional graded structure, the problem of an infinite nonhomogeneous plane containing an arbitrarily oriented crack under uniform remote heat flux is considered. In the mathematical formulation the crack is approximated a...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer 2013-12, Vol.67, p.514-522
Main Authors: Chiu, Tz-Cheng, Tsai, Shang-Wu, Chue, Ching-Hwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-333f915dd68b5f5808832fde7280ef6c1e22168b15821bcfab2588ae8e3902f93
cites cdi_FETCH-LOGICAL-c375t-333f915dd68b5f5808832fde7280ef6c1e22168b15821bcfab2588ae8e3902f93
container_end_page 522
container_issue
container_start_page 514
container_title International journal of heat and mass transfer
container_volume 67
creator Chiu, Tz-Cheng
Tsai, Shang-Wu
Chue, Ching-Hwei
description To characterize the influence of cracking defect on the heat conduction in a functional graded structure, the problem of an infinite nonhomogeneous plane containing an arbitrarily oriented crack under uniform remote heat flux is considered. In the mathematical formulation the crack is approximated as a cut with temperature discontinuity. By using Fourier transformation, the mixed boundary value problem is reduced to a Cauchy-type singular integral equation for an unknown density function. The singular integral equation is then regularized by approximating the density function with a Chebyshev polynomial-based series, and the resulting linear equation is solved by using a collocation technique. Temperature distributions along the crack surface planes and the heat flux intensity factors at crack tips are calculated for quantifying the singular temperature gradient and heat flux in the neighborhood of the crack tip, and to evaluate the effects of grading inhomogeneity, crack orientation, and crack thermal permeability on the post-damage performance of the thermal system. It is shown that the inhomogeneity in thermal conductivity around crack tip results in a higher temperature gradient, and that the heat flux intensity factor is strongly influenced by crack orientation as well as material inhomogeneity.
doi_str_mv 10.1016/j.ijheatmasstransfer.2013.08.022
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506387593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931013006832</els_id><sourcerecordid>1506387593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-333f915dd68b5f5808832fde7280ef6c1e22168b15821bcfab2588ae8e3902f93</originalsourceid><addsrcrecordid>eNqNkMtKAzEUQIMoWKv_kGU3M-ZhZjI7pahVCoLoOmQyNzbjPGqSUfr3ptadG1fhcg8n3IPQgpKcElpctrlrN6Bjr0OIXg_Bgs8ZoTwnMieMHaEZlWWVMSqrYzQjhJZZxSk5RWchtPuRXBUz9LxKDmzGoZlMdOOA3YA1ttPwM-mu2-E3rxtocA-Nm3r85eIG6wT52qV_vUvE6B0MMTHGa_N-jk6s7gJc_L5z9Hp3-7JcZeun-4flzTozvBQx45zbioqmKWQtrJBESs5sAyWTBGxhKDBG044KyWhtrK6ZkFKDBF4RZis-R4uDd-vHjwlCVL0LBrpODzBOQVFBCi5LUfGEXh9Q48cQPFi19a7XfqcoUfucqlV_c6p9TkWkSjmT4vGggHTSp0vbYNLVJlXxYKJqRvd_2TdOqIud</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506387593</pqid></control><display><type>article</type><title>Heat conduction in a functionally graded medium with an arbitrarily oriented crack</title><source>ScienceDirect Freedom Collection</source><creator>Chiu, Tz-Cheng ; Tsai, Shang-Wu ; Chue, Ching-Hwei</creator><creatorcontrib>Chiu, Tz-Cheng ; Tsai, Shang-Wu ; Chue, Ching-Hwei</creatorcontrib><description>To characterize the influence of cracking defect on the heat conduction in a functional graded structure, the problem of an infinite nonhomogeneous plane containing an arbitrarily oriented crack under uniform remote heat flux is considered. In the mathematical formulation the crack is approximated as a cut with temperature discontinuity. By using Fourier transformation, the mixed boundary value problem is reduced to a Cauchy-type singular integral equation for an unknown density function. The singular integral equation is then regularized by approximating the density function with a Chebyshev polynomial-based series, and the resulting linear equation is solved by using a collocation technique. Temperature distributions along the crack surface planes and the heat flux intensity factors at crack tips are calculated for quantifying the singular temperature gradient and heat flux in the neighborhood of the crack tip, and to evaluate the effects of grading inhomogeneity, crack orientation, and crack thermal permeability on the post-damage performance of the thermal system. It is shown that the inhomogeneity in thermal conductivity around crack tip results in a higher temperature gradient, and that the heat flux intensity factor is strongly influenced by crack orientation as well as material inhomogeneity.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2013.08.022</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Cracks ; Density ; Graded material ; Heat conduction ; Heat flux ; Heat transfer ; Inhomogeneity ; Mathematical analysis ; Partially insulating ; Singular integral equation ; Temperature gradient ; Thermal crack problem</subject><ispartof>International journal of heat and mass transfer, 2013-12, Vol.67, p.514-522</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-333f915dd68b5f5808832fde7280ef6c1e22168b15821bcfab2588ae8e3902f93</citedby><cites>FETCH-LOGICAL-c375t-333f915dd68b5f5808832fde7280ef6c1e22168b15821bcfab2588ae8e3902f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Chiu, Tz-Cheng</creatorcontrib><creatorcontrib>Tsai, Shang-Wu</creatorcontrib><creatorcontrib>Chue, Ching-Hwei</creatorcontrib><title>Heat conduction in a functionally graded medium with an arbitrarily oriented crack</title><title>International journal of heat and mass transfer</title><description>To characterize the influence of cracking defect on the heat conduction in a functional graded structure, the problem of an infinite nonhomogeneous plane containing an arbitrarily oriented crack under uniform remote heat flux is considered. In the mathematical formulation the crack is approximated as a cut with temperature discontinuity. By using Fourier transformation, the mixed boundary value problem is reduced to a Cauchy-type singular integral equation for an unknown density function. The singular integral equation is then regularized by approximating the density function with a Chebyshev polynomial-based series, and the resulting linear equation is solved by using a collocation technique. Temperature distributions along the crack surface planes and the heat flux intensity factors at crack tips are calculated for quantifying the singular temperature gradient and heat flux in the neighborhood of the crack tip, and to evaluate the effects of grading inhomogeneity, crack orientation, and crack thermal permeability on the post-damage performance of the thermal system. It is shown that the inhomogeneity in thermal conductivity around crack tip results in a higher temperature gradient, and that the heat flux intensity factor is strongly influenced by crack orientation as well as material inhomogeneity.</description><subject>Cracks</subject><subject>Density</subject><subject>Graded material</subject><subject>Heat conduction</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Inhomogeneity</subject><subject>Mathematical analysis</subject><subject>Partially insulating</subject><subject>Singular integral equation</subject><subject>Temperature gradient</subject><subject>Thermal crack problem</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkMtKAzEUQIMoWKv_kGU3M-ZhZjI7pahVCoLoOmQyNzbjPGqSUfr3ptadG1fhcg8n3IPQgpKcElpctrlrN6Bjr0OIXg_Bgs8ZoTwnMieMHaEZlWWVMSqrYzQjhJZZxSk5RWchtPuRXBUz9LxKDmzGoZlMdOOA3YA1ttPwM-mu2-E3rxtocA-Nm3r85eIG6wT52qV_vUvE6B0MMTHGa_N-jk6s7gJc_L5z9Hp3-7JcZeun-4flzTozvBQx45zbioqmKWQtrJBESs5sAyWTBGxhKDBG044KyWhtrK6ZkFKDBF4RZis-R4uDd-vHjwlCVL0LBrpODzBOQVFBCi5LUfGEXh9Q48cQPFi19a7XfqcoUfucqlV_c6p9TkWkSjmT4vGggHTSp0vbYNLVJlXxYKJqRvd_2TdOqIud</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Chiu, Tz-Cheng</creator><creator>Tsai, Shang-Wu</creator><creator>Chue, Ching-Hwei</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20131201</creationdate><title>Heat conduction in a functionally graded medium with an arbitrarily oriented crack</title><author>Chiu, Tz-Cheng ; Tsai, Shang-Wu ; Chue, Ching-Hwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-333f915dd68b5f5808832fde7280ef6c1e22168b15821bcfab2588ae8e3902f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cracks</topic><topic>Density</topic><topic>Graded material</topic><topic>Heat conduction</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Inhomogeneity</topic><topic>Mathematical analysis</topic><topic>Partially insulating</topic><topic>Singular integral equation</topic><topic>Temperature gradient</topic><topic>Thermal crack problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiu, Tz-Cheng</creatorcontrib><creatorcontrib>Tsai, Shang-Wu</creatorcontrib><creatorcontrib>Chue, Ching-Hwei</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiu, Tz-Cheng</au><au>Tsai, Shang-Wu</au><au>Chue, Ching-Hwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat conduction in a functionally graded medium with an arbitrarily oriented crack</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>67</volume><spage>514</spage><epage>522</epage><pages>514-522</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>To characterize the influence of cracking defect on the heat conduction in a functional graded structure, the problem of an infinite nonhomogeneous plane containing an arbitrarily oriented crack under uniform remote heat flux is considered. In the mathematical formulation the crack is approximated as a cut with temperature discontinuity. By using Fourier transformation, the mixed boundary value problem is reduced to a Cauchy-type singular integral equation for an unknown density function. The singular integral equation is then regularized by approximating the density function with a Chebyshev polynomial-based series, and the resulting linear equation is solved by using a collocation technique. Temperature distributions along the crack surface planes and the heat flux intensity factors at crack tips are calculated for quantifying the singular temperature gradient and heat flux in the neighborhood of the crack tip, and to evaluate the effects of grading inhomogeneity, crack orientation, and crack thermal permeability on the post-damage performance of the thermal system. It is shown that the inhomogeneity in thermal conductivity around crack tip results in a higher temperature gradient, and that the heat flux intensity factor is strongly influenced by crack orientation as well as material inhomogeneity.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2013.08.022</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2013-12, Vol.67, p.514-522
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_1506387593
source ScienceDirect Freedom Collection
subjects Cracks
Density
Graded material
Heat conduction
Heat flux
Heat transfer
Inhomogeneity
Mathematical analysis
Partially insulating
Singular integral equation
Temperature gradient
Thermal crack problem
title Heat conduction in a functionally graded medium with an arbitrarily oriented crack
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T10%3A14%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20conduction%20in%20a%20functionally%20graded%20medium%20with%20an%20arbitrarily%20oriented%20crack&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Chiu,%20Tz-Cheng&rft.date=2013-12-01&rft.volume=67&rft.spage=514&rft.epage=522&rft.pages=514-522&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2013.08.022&rft_dat=%3Cproquest_cross%3E1506387593%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-333f915dd68b5f5808832fde7280ef6c1e22168b15821bcfab2588ae8e3902f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1506387593&rft_id=info:pmid/&rfr_iscdi=true