Loading…

Testing constancy in monotone response models

A model in which the response is monotonically related to a given exposure or predictor is considered. This is motivated by dose–response analysis, however it also applies to survival distributions depending on a series of ordered multinomial parameters or, in a more general context, to change-point...

Full description

Saved in:
Bibliographic Details
Published in:Computational statistics & data analysis 2014-04, Vol.72, p.45-56
Main Authors: Colubi, Ana, Domínguez-Menchero, J. Santos, González-Rodríguez, Gil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c284t-671128505c381615a0adaf4e15a3ab380c6d8ab6d79b574436deb16edc357f33
container_end_page 56
container_issue
container_start_page 45
container_title Computational statistics & data analysis
container_volume 72
creator Colubi, Ana
Domínguez-Menchero, J. Santos
González-Rodríguez, Gil
description A model in which the response is monotonically related to a given exposure or predictor is considered. This is motivated by dose–response analysis, however it also applies to survival distributions depending on a series of ordered multinomial parameters or, in a more general context, to change-point problems. In these contexts, although the monotonicity of the response may be a priori known, it is often crucial to determine whether the relationship is effective in a given interval, in the sense of not being constant. An efficient nonparametric test for the constancy of the regression when it is known to be monotone is developed for both independent and dependent data. The asymptotic null distribution of a test statistic based on the integrated regression function is obtained. The power against local alternatives is investigated, and the improvements with respect to the previous studies in the topic are shown. Some bootstrap procedures for the case of independent and dependent data are developed and employed in several applications.
doi_str_mv 10.1016/j.csda.2013.10.029
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506398799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947313003976</els_id><sourcerecordid>1506398799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-671128505c381615a0adaf4e15a3ab380c6d8ab6d79b574436deb16edc357f33</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU89emnNR_NR8CKLX7DgpfeQJlPJ0k3WpCvsvzdlPXua4Z33HWYehO4Jbggm4nHX2OxMQzFhRWgw7S7QiihJa8k4vUSrYpJ110p2jW5y3mGMaSvVCtU95NmHr8rGkGcT7KnyodrHEOcYoEqQD2UARXEw5Vt0NZopw91fXaP-9aXfvNfbz7ePzfO2tlS1cy0kIVRxzC1TRBBusHFmbKF0zAxMYSucMoNwshu4bFsmHAxEgLOMy5GxNXo4rz2k-H0sB-q9zxamyQSIx6wJx4J1SnZdsdKz1aaYc4JRH5Lfm3TSBOsFjd7pBY1e0CxaQVNCT-dQeQl-PCSdrYdgwfkEdtYu-v_iv9pUbAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506398799</pqid></control><display><type>article</type><title>Testing constancy in monotone response models</title><source>ScienceDirect Freedom Collection 2022-2024</source><source>ScienceDirect Journals</source><source>Backfile Package - Mathematics</source><source>Backfile Package - Decision Sciences [YDT]</source><creator>Colubi, Ana ; Domínguez-Menchero, J. Santos ; González-Rodríguez, Gil</creator><creatorcontrib>Colubi, Ana ; Domínguez-Menchero, J. Santos ; González-Rodríguez, Gil</creatorcontrib><description>A model in which the response is monotonically related to a given exposure or predictor is considered. This is motivated by dose–response analysis, however it also applies to survival distributions depending on a series of ordered multinomial parameters or, in a more general context, to change-point problems. In these contexts, although the monotonicity of the response may be a priori known, it is often crucial to determine whether the relationship is effective in a given interval, in the sense of not being constant. An efficient nonparametric test for the constancy of the regression when it is known to be monotone is developed for both independent and dependent data. The asymptotic null distribution of a test statistic based on the integrated regression function is obtained. The power against local alternatives is investigated, and the improvements with respect to the previous studies in the topic are shown. Some bootstrap procedures for the case of independent and dependent data are developed and employed in several applications.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2013.10.029</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Asymptotic properties ; Bootstrap test ; Chi-bar-squared tests ; Independent and dependent data ; Isotonic regression ; Order restricted statistical inference</subject><ispartof>Computational statistics &amp; data analysis, 2014-04, Vol.72, p.45-56</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c284t-671128505c381615a0adaf4e15a3ab380c6d8ab6d79b574436deb16edc357f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947313003976$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3429,3440,3564,27924,27925,45972,45991,46003</link.rule.ids></links><search><creatorcontrib>Colubi, Ana</creatorcontrib><creatorcontrib>Domínguez-Menchero, J. Santos</creatorcontrib><creatorcontrib>González-Rodríguez, Gil</creatorcontrib><title>Testing constancy in monotone response models</title><title>Computational statistics &amp; data analysis</title><description>A model in which the response is monotonically related to a given exposure or predictor is considered. This is motivated by dose–response analysis, however it also applies to survival distributions depending on a series of ordered multinomial parameters or, in a more general context, to change-point problems. In these contexts, although the monotonicity of the response may be a priori known, it is often crucial to determine whether the relationship is effective in a given interval, in the sense of not being constant. An efficient nonparametric test for the constancy of the regression when it is known to be monotone is developed for both independent and dependent data. The asymptotic null distribution of a test statistic based on the integrated regression function is obtained. The power against local alternatives is investigated, and the improvements with respect to the previous studies in the topic are shown. Some bootstrap procedures for the case of independent and dependent data are developed and employed in several applications.</description><subject>Asymptotic properties</subject><subject>Bootstrap test</subject><subject>Chi-bar-squared tests</subject><subject>Independent and dependent data</subject><subject>Isotonic regression</subject><subject>Order restricted statistical inference</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU89emnNR_NR8CKLX7DgpfeQJlPJ0k3WpCvsvzdlPXua4Z33HWYehO4Jbggm4nHX2OxMQzFhRWgw7S7QiihJa8k4vUSrYpJ110p2jW5y3mGMaSvVCtU95NmHr8rGkGcT7KnyodrHEOcYoEqQD2UARXEw5Vt0NZopw91fXaP-9aXfvNfbz7ePzfO2tlS1cy0kIVRxzC1TRBBusHFmbKF0zAxMYSucMoNwshu4bFsmHAxEgLOMy5GxNXo4rz2k-H0sB-q9zxamyQSIx6wJx4J1SnZdsdKz1aaYc4JRH5Lfm3TSBOsFjd7pBY1e0CxaQVNCT-dQeQl-PCSdrYdgwfkEdtYu-v_iv9pUbAw</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Colubi, Ana</creator><creator>Domínguez-Menchero, J. Santos</creator><creator>González-Rodríguez, Gil</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140401</creationdate><title>Testing constancy in monotone response models</title><author>Colubi, Ana ; Domínguez-Menchero, J. Santos ; González-Rodríguez, Gil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-671128505c381615a0adaf4e15a3ab380c6d8ab6d79b574436deb16edc357f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Asymptotic properties</topic><topic>Bootstrap test</topic><topic>Chi-bar-squared tests</topic><topic>Independent and dependent data</topic><topic>Isotonic regression</topic><topic>Order restricted statistical inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colubi, Ana</creatorcontrib><creatorcontrib>Domínguez-Menchero, J. Santos</creatorcontrib><creatorcontrib>González-Rodríguez, Gil</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational statistics &amp; data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colubi, Ana</au><au>Domínguez-Menchero, J. Santos</au><au>González-Rodríguez, Gil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing constancy in monotone response models</atitle><jtitle>Computational statistics &amp; data analysis</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>72</volume><spage>45</spage><epage>56</epage><pages>45-56</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>A model in which the response is monotonically related to a given exposure or predictor is considered. This is motivated by dose–response analysis, however it also applies to survival distributions depending on a series of ordered multinomial parameters or, in a more general context, to change-point problems. In these contexts, although the monotonicity of the response may be a priori known, it is often crucial to determine whether the relationship is effective in a given interval, in the sense of not being constant. An efficient nonparametric test for the constancy of the regression when it is known to be monotone is developed for both independent and dependent data. The asymptotic null distribution of a test statistic based on the integrated regression function is obtained. The power against local alternatives is investigated, and the improvements with respect to the previous studies in the topic are shown. Some bootstrap procedures for the case of independent and dependent data are developed and employed in several applications.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2013.10.029</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9473
ispartof Computational statistics & data analysis, 2014-04, Vol.72, p.45-56
issn 0167-9473
1872-7352
language eng
recordid cdi_proquest_miscellaneous_1506398799
source ScienceDirect Freedom Collection 2022-2024; ScienceDirect Journals; Backfile Package - Mathematics; Backfile Package - Decision Sciences [YDT]
subjects Asymptotic properties
Bootstrap test
Chi-bar-squared tests
Independent and dependent data
Isotonic regression
Order restricted statistical inference
title Testing constancy in monotone response models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A14%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20constancy%20in%20monotone%20response%20models&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Colubi,%20Ana&rft.date=2014-04-01&rft.volume=72&rft.spage=45&rft.epage=56&rft.pages=45-56&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2013.10.029&rft_dat=%3Cproquest_cross%3E1506398799%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c284t-671128505c381615a0adaf4e15a3ab380c6d8ab6d79b574436deb16edc357f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1506398799&rft_id=info:pmid/&rfr_iscdi=true