Loading…

Analysis and optimal design of layered composites with high stiffness and high damping

In this paper we investigate the design of composite materials with simultaneously high stiffness and high damping. We consider layered composite materials with parallel plane layers made of a stiff constituent and a lossy polymer. We analyze the response of these composites to a dynamic load with a...

Full description

Saved in:
Bibliographic Details
Published in:International journal of solids and structures 2013-05, Vol.50 (9), p.1342-1353
Main Authors: Meaud, Julien, Sain, Trisha, Hulbert, Gregory M., Waas, Anthony M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c426t-bb7d9b003da46814d809bc779756b0440bbbec764278406166296d0884d3a5e33
cites cdi_FETCH-LOGICAL-c426t-bb7d9b003da46814d809bc779756b0440bbbec764278406166296d0884d3a5e33
container_end_page 1353
container_issue 9
container_start_page 1342
container_title International journal of solids and structures
container_volume 50
creator Meaud, Julien
Sain, Trisha
Hulbert, Gregory M.
Waas, Anthony M.
description In this paper we investigate the design of composite materials with simultaneously high stiffness and high damping. We consider layered composite materials with parallel plane layers made of a stiff constituent and a lossy polymer. We analyze the response of these composites to a dynamic load with an arbitrary direction. Using the viscoelastic correspondence principle and linear frequency domain viscoelastic models, we derive an expression for the effective complex modulus of layered composites of infinite size at infinitesimal strains. The dependence of the effective dynamic modulus and loss factor on the geometrical parameters and on the tensile and bulk loss factors of the lossy constituent is analyzed. Moreover we determine the magnitude of the strains in the lossy constituent and demonstrate that the combination of high stiffness and high damping of these composites is due to the high normal and/or shear strains in the lossy material. We use nonlinear constrained optimization to design layered composites with simultaneously high stiffness and high damping while constraining the strains in the polymer. To determine the range of validity of the linear viscoelastic model, simulations using finite deformations models are compared to the theoretical results. Finally, we compute the effective properties of composites of finite size using finite element methods and determine the minimum size required to approach the formulae derived for composites of infinite size.
doi_str_mv 10.1016/j.ijsolstr.2013.01.014
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506399484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768313000292</els_id><sourcerecordid>1506399484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-bb7d9b003da46814d809bc779756b0440bbbec764278406166296d0884d3a5e33</originalsourceid><addsrcrecordid>eNqFkEtr4zAUhcXQwqSPv1C07MbplaXI1m5C6GOg0M1Mt0KWrhMFx3J13Zb8-zqT6Tpw4MDlnAP3Y-xGwFyA0HfbedxS6mjM8xKEnIOYpH6wmagrU5RC6TM2AyihqHQtf7ILoi0AKGlgxl6Xvev2FIm7PvA0jHHnOh6Q4rrnqeWd22PGwH3aDYniiMQ_47jhm7jecBpj2_ZIx_K_U3C7IfbrK3beuo7w-r9fsr8P939WT8Xzy-Pv1fK58KrUY9E0VTANgAxO6VqoUINpfFWZaqEbUAqapkFfaVVWtQIttC6NDlDXKki3QCkv2e1xd8jp7R1ptLtIHrvO9ZjeyYoFaGmMqtXpqFRG6QnTIaqPUZ8TUcbWDnnikvdWgD0wt1v7zdwemFsQkw7FX8ciTj9_RMyWfMTeY4gZ_WhDiqcmvgDbR420</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349460204</pqid></control><display><type>article</type><title>Analysis and optimal design of layered composites with high stiffness and high damping</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Meaud, Julien ; Sain, Trisha ; Hulbert, Gregory M. ; Waas, Anthony M.</creator><creatorcontrib>Meaud, Julien ; Sain, Trisha ; Hulbert, Gregory M. ; Waas, Anthony M.</creatorcontrib><description>In this paper we investigate the design of composite materials with simultaneously high stiffness and high damping. We consider layered composite materials with parallel plane layers made of a stiff constituent and a lossy polymer. We analyze the response of these composites to a dynamic load with an arbitrary direction. Using the viscoelastic correspondence principle and linear frequency domain viscoelastic models, we derive an expression for the effective complex modulus of layered composites of infinite size at infinitesimal strains. The dependence of the effective dynamic modulus and loss factor on the geometrical parameters and on the tensile and bulk loss factors of the lossy constituent is analyzed. Moreover we determine the magnitude of the strains in the lossy constituent and demonstrate that the combination of high stiffness and high damping of these composites is due to the high normal and/or shear strains in the lossy material. We use nonlinear constrained optimization to design layered composites with simultaneously high stiffness and high damping while constraining the strains in the polymer. To determine the range of validity of the linear viscoelastic model, simulations using finite deformations models are compared to the theoretical results. Finally, we compute the effective properties of composites of finite size using finite element methods and determine the minimum size required to approach the formulae derived for composites of infinite size.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2013.01.014</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Composite materials ; Constituents ; Damping ; Laminates ; Mathematical analysis ; Mathematical models ; Multilayers ; Optimization ; Stiffness ; Viscoelastic</subject><ispartof>International journal of solids and structures, 2013-05, Vol.50 (9), p.1342-1353</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-bb7d9b003da46814d809bc779756b0440bbbec764278406166296d0884d3a5e33</citedby><cites>FETCH-LOGICAL-c426t-bb7d9b003da46814d809bc779756b0440bbbec764278406166296d0884d3a5e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Meaud, Julien</creatorcontrib><creatorcontrib>Sain, Trisha</creatorcontrib><creatorcontrib>Hulbert, Gregory M.</creatorcontrib><creatorcontrib>Waas, Anthony M.</creatorcontrib><title>Analysis and optimal design of layered composites with high stiffness and high damping</title><title>International journal of solids and structures</title><description>In this paper we investigate the design of composite materials with simultaneously high stiffness and high damping. We consider layered composite materials with parallel plane layers made of a stiff constituent and a lossy polymer. We analyze the response of these composites to a dynamic load with an arbitrary direction. Using the viscoelastic correspondence principle and linear frequency domain viscoelastic models, we derive an expression for the effective complex modulus of layered composites of infinite size at infinitesimal strains. The dependence of the effective dynamic modulus and loss factor on the geometrical parameters and on the tensile and bulk loss factors of the lossy constituent is analyzed. Moreover we determine the magnitude of the strains in the lossy constituent and demonstrate that the combination of high stiffness and high damping of these composites is due to the high normal and/or shear strains in the lossy material. We use nonlinear constrained optimization to design layered composites with simultaneously high stiffness and high damping while constraining the strains in the polymer. To determine the range of validity of the linear viscoelastic model, simulations using finite deformations models are compared to the theoretical results. Finally, we compute the effective properties of composites of finite size using finite element methods and determine the minimum size required to approach the formulae derived for composites of infinite size.</description><subject>Composite materials</subject><subject>Constituents</subject><subject>Damping</subject><subject>Laminates</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multilayers</subject><subject>Optimization</subject><subject>Stiffness</subject><subject>Viscoelastic</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkEtr4zAUhcXQwqSPv1C07MbplaXI1m5C6GOg0M1Mt0KWrhMFx3J13Zb8-zqT6Tpw4MDlnAP3Y-xGwFyA0HfbedxS6mjM8xKEnIOYpH6wmagrU5RC6TM2AyihqHQtf7ILoi0AKGlgxl6Xvev2FIm7PvA0jHHnOh6Q4rrnqeWd22PGwH3aDYniiMQ_47jhm7jecBpj2_ZIx_K_U3C7IfbrK3beuo7w-r9fsr8P939WT8Xzy-Pv1fK58KrUY9E0VTANgAxO6VqoUINpfFWZaqEbUAqapkFfaVVWtQIttC6NDlDXKki3QCkv2e1xd8jp7R1ptLtIHrvO9ZjeyYoFaGmMqtXpqFRG6QnTIaqPUZ8TUcbWDnnikvdWgD0wt1v7zdwemFsQkw7FX8ciTj9_RMyWfMTeY4gZ_WhDiqcmvgDbR420</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Meaud, Julien</creator><creator>Sain, Trisha</creator><creator>Hulbert, Gregory M.</creator><creator>Waas, Anthony M.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20130501</creationdate><title>Analysis and optimal design of layered composites with high stiffness and high damping</title><author>Meaud, Julien ; Sain, Trisha ; Hulbert, Gregory M. ; Waas, Anthony M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-bb7d9b003da46814d809bc779756b0440bbbec764278406166296d0884d3a5e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Composite materials</topic><topic>Constituents</topic><topic>Damping</topic><topic>Laminates</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multilayers</topic><topic>Optimization</topic><topic>Stiffness</topic><topic>Viscoelastic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meaud, Julien</creatorcontrib><creatorcontrib>Sain, Trisha</creatorcontrib><creatorcontrib>Hulbert, Gregory M.</creatorcontrib><creatorcontrib>Waas, Anthony M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meaud, Julien</au><au>Sain, Trisha</au><au>Hulbert, Gregory M.</au><au>Waas, Anthony M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and optimal design of layered composites with high stiffness and high damping</atitle><jtitle>International journal of solids and structures</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>50</volume><issue>9</issue><spage>1342</spage><epage>1353</epage><pages>1342-1353</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>In this paper we investigate the design of composite materials with simultaneously high stiffness and high damping. We consider layered composite materials with parallel plane layers made of a stiff constituent and a lossy polymer. We analyze the response of these composites to a dynamic load with an arbitrary direction. Using the viscoelastic correspondence principle and linear frequency domain viscoelastic models, we derive an expression for the effective complex modulus of layered composites of infinite size at infinitesimal strains. The dependence of the effective dynamic modulus and loss factor on the geometrical parameters and on the tensile and bulk loss factors of the lossy constituent is analyzed. Moreover we determine the magnitude of the strains in the lossy constituent and demonstrate that the combination of high stiffness and high damping of these composites is due to the high normal and/or shear strains in the lossy material. We use nonlinear constrained optimization to design layered composites with simultaneously high stiffness and high damping while constraining the strains in the polymer. To determine the range of validity of the linear viscoelastic model, simulations using finite deformations models are compared to the theoretical results. Finally, we compute the effective properties of composites of finite size using finite element methods and determine the minimum size required to approach the formulae derived for composites of infinite size.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2013.01.014</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2013-05, Vol.50 (9), p.1342-1353
issn 0020-7683
1879-2146
language eng
recordid cdi_proquest_miscellaneous_1506399484
source ScienceDirect Freedom Collection 2022-2024
subjects Composite materials
Constituents
Damping
Laminates
Mathematical analysis
Mathematical models
Multilayers
Optimization
Stiffness
Viscoelastic
title Analysis and optimal design of layered composites with high stiffness and high damping
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A41%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20optimal%20design%20of%20layered%20composites%20with%20high%20stiffness%20and%20high%20damping&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Meaud,%20Julien&rft.date=2013-05-01&rft.volume=50&rft.issue=9&rft.spage=1342&rft.epage=1353&rft.pages=1342-1353&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2013.01.014&rft_dat=%3Cproquest_cross%3E1506399484%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-bb7d9b003da46814d809bc779756b0440bbbec764278406166296d0884d3a5e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1349460204&rft_id=info:pmid/&rfr_iscdi=true