Loading…
Analysis and optimal design of layered composites with high stiffness and high damping
In this paper we investigate the design of composite materials with simultaneously high stiffness and high damping. We consider layered composite materials with parallel plane layers made of a stiff constituent and a lossy polymer. We analyze the response of these composites to a dynamic load with a...
Saved in:
Published in: | International journal of solids and structures 2013-05, Vol.50 (9), p.1342-1353 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c426t-bb7d9b003da46814d809bc779756b0440bbbec764278406166296d0884d3a5e33 |
---|---|
cites | cdi_FETCH-LOGICAL-c426t-bb7d9b003da46814d809bc779756b0440bbbec764278406166296d0884d3a5e33 |
container_end_page | 1353 |
container_issue | 9 |
container_start_page | 1342 |
container_title | International journal of solids and structures |
container_volume | 50 |
creator | Meaud, Julien Sain, Trisha Hulbert, Gregory M. Waas, Anthony M. |
description | In this paper we investigate the design of composite materials with simultaneously high stiffness and high damping. We consider layered composite materials with parallel plane layers made of a stiff constituent and a lossy polymer. We analyze the response of these composites to a dynamic load with an arbitrary direction. Using the viscoelastic correspondence principle and linear frequency domain viscoelastic models, we derive an expression for the effective complex modulus of layered composites of infinite size at infinitesimal strains. The dependence of the effective dynamic modulus and loss factor on the geometrical parameters and on the tensile and bulk loss factors of the lossy constituent is analyzed. Moreover we determine the magnitude of the strains in the lossy constituent and demonstrate that the combination of high stiffness and high damping of these composites is due to the high normal and/or shear strains in the lossy material. We use nonlinear constrained optimization to design layered composites with simultaneously high stiffness and high damping while constraining the strains in the polymer. To determine the range of validity of the linear viscoelastic model, simulations using finite deformations models are compared to the theoretical results. Finally, we compute the effective properties of composites of finite size using finite element methods and determine the minimum size required to approach the formulae derived for composites of infinite size. |
doi_str_mv | 10.1016/j.ijsolstr.2013.01.014 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506399484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768313000292</els_id><sourcerecordid>1506399484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-bb7d9b003da46814d809bc779756b0440bbbec764278406166296d0884d3a5e33</originalsourceid><addsrcrecordid>eNqFkEtr4zAUhcXQwqSPv1C07MbplaXI1m5C6GOg0M1Mt0KWrhMFx3J13Zb8-zqT6Tpw4MDlnAP3Y-xGwFyA0HfbedxS6mjM8xKEnIOYpH6wmagrU5RC6TM2AyihqHQtf7ILoi0AKGlgxl6Xvev2FIm7PvA0jHHnOh6Q4rrnqeWd22PGwH3aDYniiMQ_47jhm7jecBpj2_ZIx_K_U3C7IfbrK3beuo7w-r9fsr8P939WT8Xzy-Pv1fK58KrUY9E0VTANgAxO6VqoUINpfFWZaqEbUAqapkFfaVVWtQIttC6NDlDXKki3QCkv2e1xd8jp7R1ptLtIHrvO9ZjeyYoFaGmMqtXpqFRG6QnTIaqPUZ8TUcbWDnnikvdWgD0wt1v7zdwemFsQkw7FX8ciTj9_RMyWfMTeY4gZ_WhDiqcmvgDbR420</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349460204</pqid></control><display><type>article</type><title>Analysis and optimal design of layered composites with high stiffness and high damping</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Meaud, Julien ; Sain, Trisha ; Hulbert, Gregory M. ; Waas, Anthony M.</creator><creatorcontrib>Meaud, Julien ; Sain, Trisha ; Hulbert, Gregory M. ; Waas, Anthony M.</creatorcontrib><description>In this paper we investigate the design of composite materials with simultaneously high stiffness and high damping. We consider layered composite materials with parallel plane layers made of a stiff constituent and a lossy polymer. We analyze the response of these composites to a dynamic load with an arbitrary direction. Using the viscoelastic correspondence principle and linear frequency domain viscoelastic models, we derive an expression for the effective complex modulus of layered composites of infinite size at infinitesimal strains. The dependence of the effective dynamic modulus and loss factor on the geometrical parameters and on the tensile and bulk loss factors of the lossy constituent is analyzed. Moreover we determine the magnitude of the strains in the lossy constituent and demonstrate that the combination of high stiffness and high damping of these composites is due to the high normal and/or shear strains in the lossy material. We use nonlinear constrained optimization to design layered composites with simultaneously high stiffness and high damping while constraining the strains in the polymer. To determine the range of validity of the linear viscoelastic model, simulations using finite deformations models are compared to the theoretical results. Finally, we compute the effective properties of composites of finite size using finite element methods and determine the minimum size required to approach the formulae derived for composites of infinite size.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2013.01.014</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Composite materials ; Constituents ; Damping ; Laminates ; Mathematical analysis ; Mathematical models ; Multilayers ; Optimization ; Stiffness ; Viscoelastic</subject><ispartof>International journal of solids and structures, 2013-05, Vol.50 (9), p.1342-1353</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-bb7d9b003da46814d809bc779756b0440bbbec764278406166296d0884d3a5e33</citedby><cites>FETCH-LOGICAL-c426t-bb7d9b003da46814d809bc779756b0440bbbec764278406166296d0884d3a5e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Meaud, Julien</creatorcontrib><creatorcontrib>Sain, Trisha</creatorcontrib><creatorcontrib>Hulbert, Gregory M.</creatorcontrib><creatorcontrib>Waas, Anthony M.</creatorcontrib><title>Analysis and optimal design of layered composites with high stiffness and high damping</title><title>International journal of solids and structures</title><description>In this paper we investigate the design of composite materials with simultaneously high stiffness and high damping. We consider layered composite materials with parallel plane layers made of a stiff constituent and a lossy polymer. We analyze the response of these composites to a dynamic load with an arbitrary direction. Using the viscoelastic correspondence principle and linear frequency domain viscoelastic models, we derive an expression for the effective complex modulus of layered composites of infinite size at infinitesimal strains. The dependence of the effective dynamic modulus and loss factor on the geometrical parameters and on the tensile and bulk loss factors of the lossy constituent is analyzed. Moreover we determine the magnitude of the strains in the lossy constituent and demonstrate that the combination of high stiffness and high damping of these composites is due to the high normal and/or shear strains in the lossy material. We use nonlinear constrained optimization to design layered composites with simultaneously high stiffness and high damping while constraining the strains in the polymer. To determine the range of validity of the linear viscoelastic model, simulations using finite deformations models are compared to the theoretical results. Finally, we compute the effective properties of composites of finite size using finite element methods and determine the minimum size required to approach the formulae derived for composites of infinite size.</description><subject>Composite materials</subject><subject>Constituents</subject><subject>Damping</subject><subject>Laminates</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multilayers</subject><subject>Optimization</subject><subject>Stiffness</subject><subject>Viscoelastic</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkEtr4zAUhcXQwqSPv1C07MbplaXI1m5C6GOg0M1Mt0KWrhMFx3J13Zb8-zqT6Tpw4MDlnAP3Y-xGwFyA0HfbedxS6mjM8xKEnIOYpH6wmagrU5RC6TM2AyihqHQtf7ILoi0AKGlgxl6Xvev2FIm7PvA0jHHnOh6Q4rrnqeWd22PGwH3aDYniiMQ_47jhm7jecBpj2_ZIx_K_U3C7IfbrK3beuo7w-r9fsr8P939WT8Xzy-Pv1fK58KrUY9E0VTANgAxO6VqoUINpfFWZaqEbUAqapkFfaVVWtQIttC6NDlDXKki3QCkv2e1xd8jp7R1ptLtIHrvO9ZjeyYoFaGmMqtXpqFRG6QnTIaqPUZ8TUcbWDnnikvdWgD0wt1v7zdwemFsQkw7FX8ciTj9_RMyWfMTeY4gZ_WhDiqcmvgDbR420</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Meaud, Julien</creator><creator>Sain, Trisha</creator><creator>Hulbert, Gregory M.</creator><creator>Waas, Anthony M.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20130501</creationdate><title>Analysis and optimal design of layered composites with high stiffness and high damping</title><author>Meaud, Julien ; Sain, Trisha ; Hulbert, Gregory M. ; Waas, Anthony M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-bb7d9b003da46814d809bc779756b0440bbbec764278406166296d0884d3a5e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Composite materials</topic><topic>Constituents</topic><topic>Damping</topic><topic>Laminates</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multilayers</topic><topic>Optimization</topic><topic>Stiffness</topic><topic>Viscoelastic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meaud, Julien</creatorcontrib><creatorcontrib>Sain, Trisha</creatorcontrib><creatorcontrib>Hulbert, Gregory M.</creatorcontrib><creatorcontrib>Waas, Anthony M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meaud, Julien</au><au>Sain, Trisha</au><au>Hulbert, Gregory M.</au><au>Waas, Anthony M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and optimal design of layered composites with high stiffness and high damping</atitle><jtitle>International journal of solids and structures</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>50</volume><issue>9</issue><spage>1342</spage><epage>1353</epage><pages>1342-1353</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>In this paper we investigate the design of composite materials with simultaneously high stiffness and high damping. We consider layered composite materials with parallel plane layers made of a stiff constituent and a lossy polymer. We analyze the response of these composites to a dynamic load with an arbitrary direction. Using the viscoelastic correspondence principle and linear frequency domain viscoelastic models, we derive an expression for the effective complex modulus of layered composites of infinite size at infinitesimal strains. The dependence of the effective dynamic modulus and loss factor on the geometrical parameters and on the tensile and bulk loss factors of the lossy constituent is analyzed. Moreover we determine the magnitude of the strains in the lossy constituent and demonstrate that the combination of high stiffness and high damping of these composites is due to the high normal and/or shear strains in the lossy material. We use nonlinear constrained optimization to design layered composites with simultaneously high stiffness and high damping while constraining the strains in the polymer. To determine the range of validity of the linear viscoelastic model, simulations using finite deformations models are compared to the theoretical results. Finally, we compute the effective properties of composites of finite size using finite element methods and determine the minimum size required to approach the formulae derived for composites of infinite size.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2013.01.014</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7683 |
ispartof | International journal of solids and structures, 2013-05, Vol.50 (9), p.1342-1353 |
issn | 0020-7683 1879-2146 |
language | eng |
recordid | cdi_proquest_miscellaneous_1506399484 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Composite materials Constituents Damping Laminates Mathematical analysis Mathematical models Multilayers Optimization Stiffness Viscoelastic |
title | Analysis and optimal design of layered composites with high stiffness and high damping |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A41%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20optimal%20design%20of%20layered%20composites%20with%20high%20stiffness%20and%20high%20damping&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Meaud,%20Julien&rft.date=2013-05-01&rft.volume=50&rft.issue=9&rft.spage=1342&rft.epage=1353&rft.pages=1342-1353&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2013.01.014&rft_dat=%3Cproquest_cross%3E1506399484%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-bb7d9b003da46814d809bc779756b0440bbbec764278406166296d0884d3a5e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1349460204&rft_id=info:pmid/&rfr_iscdi=true |