Loading…
Photoluminescent Green Carbon Nanodots from Food-Waste-Derived Sources: Large-Scale Synthesis, Properties, and Biomedical Applications
We have developed a simple approach for the large-scale synthesis of water-soluble green carbon nanodots (G-dots) from many kinds of large food waste-derived sources. About 120 g of G-dots per 100 kg of food waste can be synthesized using our simple and environmentally friendly synthesis approach. T...
Saved in:
Published in: | ACS applied materials & interfaces 2014-03, Vol.6 (5), p.3365-3370 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have developed a simple approach for the large-scale synthesis of water-soluble green carbon nanodots (G-dots) from many kinds of large food waste-derived sources. About 120 g of G-dots per 100 kg of food waste can be synthesized using our simple and environmentally friendly synthesis approach. The G-dots exhibit a high degree of solubility in water because of the abundant oxygen-containing functional groups around their surface. The narrow band of photoluminescence emission (400–470 nm) confirms that the size of the G-dots (∼4 nm) is small because of a similar quantum effects and emission traps on the surfaces. The G-dots have excellent photostability; their photoluminescence intensity decreases slowly (∼8%) under continuous excitation with a Xe lamp for 10 days. We carried out cell viability assay to assess the effect of cytotoxicity by introducing G-dots in cells such as Chinese hamster ovary cells (CHO-K1), mouse muscle cells (C2C12), and African green monkey kidney cells (COS-7), up to a concentration of 2 mg mL–1 for 24 h. Due to their high photostability and low cytotoxicity, these G-dots are excellent probes for in vitro bioimaging. Moreover, the byproducts (not including G-dots) of G-dot synthesis from large food-waste derived sources promoted the growth and development of seedlings germinated on 3DW-supplemented gauze. Because of the combined advantages of green synthesis, high aqueous stability, high photostability, and low cytotoxicity, the G-dots show considerable promise in various areas, including biomedical imaging, solution state optoelectronics, and plant seed germination and/or growth. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/am500159p |