Loading…
Bacterial inactivation by high‐voltage atmospheric cold plasma: influence of process parameters and effects on cell leakage and DNA
Aims This study investigated a range of atmospheric cold plasma (ACP) process parameters for bacterial inactivation with further investigation of selected parameters on cell membrane integrity and DNA damage. The effects of high voltage levels, mode of exposure, gas mixture and treatment time agains...
Saved in:
Published in: | Journal of applied microbiology 2014-04, Vol.116 (4), p.784-794 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4496-43ce075f940670d95fa7da5e3da4060779074c7a5bf45d361d11c915775a81683 |
---|---|
cites | cdi_FETCH-LOGICAL-c4496-43ce075f940670d95fa7da5e3da4060779074c7a5bf45d361d11c915775a81683 |
container_end_page | 794 |
container_issue | 4 |
container_start_page | 784 |
container_title | Journal of applied microbiology |
container_volume | 116 |
creator | Lu, H. Patil, S. Keener, K.M. Cullen, P.J. Bourke, P. |
description | Aims
This study investigated a range of atmospheric cold plasma (ACP) process parameters for bacterial inactivation with further investigation of selected parameters on cell membrane integrity and DNA damage. The effects of high voltage levels, mode of exposure, gas mixture and treatment time against Escherichia coli and Listeria monocytogenes were examined.
Methods and Results
108 CFU ml−1 E. coli ATCC 25922, E. coli NCTC 12900 and L. monocytogenes NCTC11994 were ACP‐treated in 10 ml phosphate‐buffered saline (PBS). Working gas mixtures used were air (gas mix 1), 90% N2 + 10% O2 (gas mix 2) and 65% O2 + 30% CO2 + 5% N2 (gas mix 3). Greater reduction of viability was observed for all strains using higher voltage of 70 kVRMS and with working gas mixtures with higher oxygen content in combination with direct exposure. Indirect ACP exposure for 30 s inactivated below detection level both E. coli strains. L. monocytogenes inactivation within 30 s was irrespective of the mode of exposure. Leakage was assessed using A260 absorbance, and DNA damage was monitored using PCR and gel electrophoresis. Membrane integrity was compromised after 5 s, with noticeable DNA damage also dependent on the target cell after 30 s.
Conclusions
Plasma treatment was effective for inactivation of challenge micro‐organisms, with a greater sensitivity of L. monocytogenes noted. Different damage patterns were observed for the different bacterial strains attributed to the membrane structure and potential resistance mechanisms.
Significance and Impact of the Study
Using atmospheric air as working gas resulted in useful inactivation by comparison with high nitrogen or high oxygen mix. The mechanism of inactivation was a function of treatment duration and cell membrane characteristics, thus offering potential for optimized process parameters specific to the microbial challenge. |
doi_str_mv | 10.1111/jam.12426 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1508679596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3247834751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4496-43ce075f940670d95fa7da5e3da4060779074c7a5bf45d361d11c915775a81683</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhS0EoqWw4AWQJYREF2nt-C9hN7SFFhXYwDq649gdD04c7KTV7Niw5xl5EjyTASQkvPHV9edzjnQQekrJCc3ndA3dCS15Ke-hQ8qkKEqpyvu7mReCqPIAPUppTQhlRMiH6KDkTJUV4Yfo-2vQo4kOPHZ9Ht0tjC70eLnBK3ez-vntx23wI9wYDGMX0rDKrMY6-BYPHlIHr_I_6yfTa4ODxUMM2qSEB4jQmaycMPQtNtYaPSaclbXxHnsDX3ai-e38w-IxemDBJ_Nkfx-hz28uPp1dFtcf316dLa4LzXktC860IUrYmhOpSFsLC6oFYVgLeUOUqoniWoFYWi5aJmlLqa6pUEpARWXFjtDLWTfH_DqZNDadS9tA0JswpYYKUklVi1pm9Pk_6DpMsc_ptpRSigjBMnU8UzqGlKKxzRBdB3HTUNJsu2lyN82um8w-2ytOy860f8jfZWTgxR6ApMHbCL126S9XlRWbTU9n7s55s_m_Y_Nu8X62_gUEfKWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507770553</pqid></control><display><type>article</type><title>Bacterial inactivation by high‐voltage atmospheric cold plasma: influence of process parameters and effects on cell leakage and DNA</title><source>Alma/SFX Local Collection</source><creator>Lu, H. ; Patil, S. ; Keener, K.M. ; Cullen, P.J. ; Bourke, P.</creator><creatorcontrib>Lu, H. ; Patil, S. ; Keener, K.M. ; Cullen, P.J. ; Bourke, P.</creatorcontrib><description>Aims
This study investigated a range of atmospheric cold plasma (ACP) process parameters for bacterial inactivation with further investigation of selected parameters on cell membrane integrity and DNA damage. The effects of high voltage levels, mode of exposure, gas mixture and treatment time against Escherichia coli and Listeria monocytogenes were examined.
Methods and Results
108 CFU ml−1 E. coli ATCC 25922, E. coli NCTC 12900 and L. monocytogenes NCTC11994 were ACP‐treated in 10 ml phosphate‐buffered saline (PBS). Working gas mixtures used were air (gas mix 1), 90% N2 + 10% O2 (gas mix 2) and 65% O2 + 30% CO2 + 5% N2 (gas mix 3). Greater reduction of viability was observed for all strains using higher voltage of 70 kVRMS and with working gas mixtures with higher oxygen content in combination with direct exposure. Indirect ACP exposure for 30 s inactivated below detection level both E. coli strains. L. monocytogenes inactivation within 30 s was irrespective of the mode of exposure. Leakage was assessed using A260 absorbance, and DNA damage was monitored using PCR and gel electrophoresis. Membrane integrity was compromised after 5 s, with noticeable DNA damage also dependent on the target cell after 30 s.
Conclusions
Plasma treatment was effective for inactivation of challenge micro‐organisms, with a greater sensitivity of L. monocytogenes noted. Different damage patterns were observed for the different bacterial strains attributed to the membrane structure and potential resistance mechanisms.
Significance and Impact of the Study
Using atmospheric air as working gas resulted in useful inactivation by comparison with high nitrogen or high oxygen mix. The mechanism of inactivation was a function of treatment duration and cell membrane characteristics, thus offering potential for optimized process parameters specific to the microbial challenge.</description><identifier>ISSN: 1364-5072</identifier><identifier>EISSN: 1365-2672</identifier><identifier>DOI: 10.1111/jam.12426</identifier><identifier>PMID: 24372804</identifier><identifier>CODEN: JAMIFK</identifier><language>eng</language><publisher>Oxford: Blackwell</publisher><subject>Bacteria ; Biological and medical sciences ; cell integrity ; Cell Membrane - metabolism ; Cellular biology ; DBD‐ACP ; Deoxyribonucleic acid ; DNA ; DNA Damage ; Escherichia coli ; Escherichia coli - growth & development ; Escherichia coli - metabolism ; Fundamental and applied biological sciences. Psychology ; Listeria monocytogenes ; Listeria monocytogenes - growth & development ; Listeria monocytogenes - metabolism ; Microbial Viability ; Microbiology ; Plasma ; Plasma Gases ; Sterilization ; voltage level</subject><ispartof>Journal of applied microbiology, 2014-04, Vol.116 (4), p.784-794</ispartof><rights>2013 The Society for Applied Microbiology</rights><rights>2015 INIST-CNRS</rights><rights>2013 The Society for Applied Microbiology.</rights><rights>Copyright © 2014 The Society for Applied Microbiology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4496-43ce075f940670d95fa7da5e3da4060779074c7a5bf45d361d11c915775a81683</citedby><cites>FETCH-LOGICAL-c4496-43ce075f940670d95fa7da5e3da4060779074c7a5bf45d361d11c915775a81683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28283553$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24372804$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, H.</creatorcontrib><creatorcontrib>Patil, S.</creatorcontrib><creatorcontrib>Keener, K.M.</creatorcontrib><creatorcontrib>Cullen, P.J.</creatorcontrib><creatorcontrib>Bourke, P.</creatorcontrib><title>Bacterial inactivation by high‐voltage atmospheric cold plasma: influence of process parameters and effects on cell leakage and DNA</title><title>Journal of applied microbiology</title><addtitle>J Appl Microbiol</addtitle><description>Aims
This study investigated a range of atmospheric cold plasma (ACP) process parameters for bacterial inactivation with further investigation of selected parameters on cell membrane integrity and DNA damage. The effects of high voltage levels, mode of exposure, gas mixture and treatment time against Escherichia coli and Listeria monocytogenes were examined.
Methods and Results
108 CFU ml−1 E. coli ATCC 25922, E. coli NCTC 12900 and L. monocytogenes NCTC11994 were ACP‐treated in 10 ml phosphate‐buffered saline (PBS). Working gas mixtures used were air (gas mix 1), 90% N2 + 10% O2 (gas mix 2) and 65% O2 + 30% CO2 + 5% N2 (gas mix 3). Greater reduction of viability was observed for all strains using higher voltage of 70 kVRMS and with working gas mixtures with higher oxygen content in combination with direct exposure. Indirect ACP exposure for 30 s inactivated below detection level both E. coli strains. L. monocytogenes inactivation within 30 s was irrespective of the mode of exposure. Leakage was assessed using A260 absorbance, and DNA damage was monitored using PCR and gel electrophoresis. Membrane integrity was compromised after 5 s, with noticeable DNA damage also dependent on the target cell after 30 s.
Conclusions
Plasma treatment was effective for inactivation of challenge micro‐organisms, with a greater sensitivity of L. monocytogenes noted. Different damage patterns were observed for the different bacterial strains attributed to the membrane structure and potential resistance mechanisms.
Significance and Impact of the Study
Using atmospheric air as working gas resulted in useful inactivation by comparison with high nitrogen or high oxygen mix. The mechanism of inactivation was a function of treatment duration and cell membrane characteristics, thus offering potential for optimized process parameters specific to the microbial challenge.</description><subject>Bacteria</subject><subject>Biological and medical sciences</subject><subject>cell integrity</subject><subject>Cell Membrane - metabolism</subject><subject>Cellular biology</subject><subject>DBD‐ACP</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Damage</subject><subject>Escherichia coli</subject><subject>Escherichia coli - growth & development</subject><subject>Escherichia coli - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Listeria monocytogenes</subject><subject>Listeria monocytogenes - growth & development</subject><subject>Listeria monocytogenes - metabolism</subject><subject>Microbial Viability</subject><subject>Microbiology</subject><subject>Plasma</subject><subject>Plasma Gases</subject><subject>Sterilization</subject><subject>voltage level</subject><issn>1364-5072</issn><issn>1365-2672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kc1u1DAUhS0EoqWw4AWQJYREF2nt-C9hN7SFFhXYwDq649gdD04c7KTV7Niw5xl5EjyTASQkvPHV9edzjnQQekrJCc3ndA3dCS15Ke-hQ8qkKEqpyvu7mReCqPIAPUppTQhlRMiH6KDkTJUV4Yfo-2vQo4kOPHZ9Ht0tjC70eLnBK3ez-vntx23wI9wYDGMX0rDKrMY6-BYPHlIHr_I_6yfTa4ODxUMM2qSEB4jQmaycMPQtNtYaPSaclbXxHnsDX3ai-e38w-IxemDBJ_Nkfx-hz28uPp1dFtcf316dLa4LzXktC860IUrYmhOpSFsLC6oFYVgLeUOUqoniWoFYWi5aJmlLqa6pUEpARWXFjtDLWTfH_DqZNDadS9tA0JswpYYKUklVi1pm9Pk_6DpMsc_ptpRSigjBMnU8UzqGlKKxzRBdB3HTUNJsu2lyN82um8w-2ytOy860f8jfZWTgxR6ApMHbCL126S9XlRWbTU9n7s55s_m_Y_Nu8X62_gUEfKWg</recordid><startdate>201404</startdate><enddate>201404</enddate><creator>Lu, H.</creator><creator>Patil, S.</creator><creator>Keener, K.M.</creator><creator>Cullen, P.J.</creator><creator>Bourke, P.</creator><general>Blackwell</general><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201404</creationdate><title>Bacterial inactivation by high‐voltage atmospheric cold plasma: influence of process parameters and effects on cell leakage and DNA</title><author>Lu, H. ; Patil, S. ; Keener, K.M. ; Cullen, P.J. ; Bourke, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4496-43ce075f940670d95fa7da5e3da4060779074c7a5bf45d361d11c915775a81683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bacteria</topic><topic>Biological and medical sciences</topic><topic>cell integrity</topic><topic>Cell Membrane - metabolism</topic><topic>Cellular biology</topic><topic>DBD‐ACP</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Damage</topic><topic>Escherichia coli</topic><topic>Escherichia coli - growth & development</topic><topic>Escherichia coli - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Listeria monocytogenes</topic><topic>Listeria monocytogenes - growth & development</topic><topic>Listeria monocytogenes - metabolism</topic><topic>Microbial Viability</topic><topic>Microbiology</topic><topic>Plasma</topic><topic>Plasma Gases</topic><topic>Sterilization</topic><topic>voltage level</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, H.</creatorcontrib><creatorcontrib>Patil, S.</creatorcontrib><creatorcontrib>Keener, K.M.</creatorcontrib><creatorcontrib>Cullen, P.J.</creatorcontrib><creatorcontrib>Bourke, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of applied microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, H.</au><au>Patil, S.</au><au>Keener, K.M.</au><au>Cullen, P.J.</au><au>Bourke, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial inactivation by high‐voltage atmospheric cold plasma: influence of process parameters and effects on cell leakage and DNA</atitle><jtitle>Journal of applied microbiology</jtitle><addtitle>J Appl Microbiol</addtitle><date>2014-04</date><risdate>2014</risdate><volume>116</volume><issue>4</issue><spage>784</spage><epage>794</epage><pages>784-794</pages><issn>1364-5072</issn><eissn>1365-2672</eissn><coden>JAMIFK</coden><abstract>Aims
This study investigated a range of atmospheric cold plasma (ACP) process parameters for bacterial inactivation with further investigation of selected parameters on cell membrane integrity and DNA damage. The effects of high voltage levels, mode of exposure, gas mixture and treatment time against Escherichia coli and Listeria monocytogenes were examined.
Methods and Results
108 CFU ml−1 E. coli ATCC 25922, E. coli NCTC 12900 and L. monocytogenes NCTC11994 were ACP‐treated in 10 ml phosphate‐buffered saline (PBS). Working gas mixtures used were air (gas mix 1), 90% N2 + 10% O2 (gas mix 2) and 65% O2 + 30% CO2 + 5% N2 (gas mix 3). Greater reduction of viability was observed for all strains using higher voltage of 70 kVRMS and with working gas mixtures with higher oxygen content in combination with direct exposure. Indirect ACP exposure for 30 s inactivated below detection level both E. coli strains. L. monocytogenes inactivation within 30 s was irrespective of the mode of exposure. Leakage was assessed using A260 absorbance, and DNA damage was monitored using PCR and gel electrophoresis. Membrane integrity was compromised after 5 s, with noticeable DNA damage also dependent on the target cell after 30 s.
Conclusions
Plasma treatment was effective for inactivation of challenge micro‐organisms, with a greater sensitivity of L. monocytogenes noted. Different damage patterns were observed for the different bacterial strains attributed to the membrane structure and potential resistance mechanisms.
Significance and Impact of the Study
Using atmospheric air as working gas resulted in useful inactivation by comparison with high nitrogen or high oxygen mix. The mechanism of inactivation was a function of treatment duration and cell membrane characteristics, thus offering potential for optimized process parameters specific to the microbial challenge.</abstract><cop>Oxford</cop><pub>Blackwell</pub><pmid>24372804</pmid><doi>10.1111/jam.12426</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5072 |
ispartof | Journal of applied microbiology, 2014-04, Vol.116 (4), p.784-794 |
issn | 1364-5072 1365-2672 |
language | eng |
recordid | cdi_proquest_miscellaneous_1508679596 |
source | Alma/SFX Local Collection |
subjects | Bacteria Biological and medical sciences cell integrity Cell Membrane - metabolism Cellular biology DBD‐ACP Deoxyribonucleic acid DNA DNA Damage Escherichia coli Escherichia coli - growth & development Escherichia coli - metabolism Fundamental and applied biological sciences. Psychology Listeria monocytogenes Listeria monocytogenes - growth & development Listeria monocytogenes - metabolism Microbial Viability Microbiology Plasma Plasma Gases Sterilization voltage level |
title | Bacterial inactivation by high‐voltage atmospheric cold plasma: influence of process parameters and effects on cell leakage and DNA |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20inactivation%20by%20high%E2%80%90voltage%20atmospheric%20cold%20plasma:%20influence%20of%20process%20parameters%20and%20effects%20on%20cell%20leakage%20and%20DNA&rft.jtitle=Journal%20of%20applied%20microbiology&rft.au=Lu,%20H.&rft.date=2014-04&rft.volume=116&rft.issue=4&rft.spage=784&rft.epage=794&rft.pages=784-794&rft.issn=1364-5072&rft.eissn=1365-2672&rft.coden=JAMIFK&rft_id=info:doi/10.1111/jam.12426&rft_dat=%3Cproquest_cross%3E3247834751%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4496-43ce075f940670d95fa7da5e3da4060779074c7a5bf45d361d11c915775a81683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1507770553&rft_id=info:pmid/24372804&rfr_iscdi=true |