Loading…

Bacterial inactivation by high‐voltage atmospheric cold plasma: influence of process parameters and effects on cell leakage and DNA

Aims This study investigated a range of atmospheric cold plasma (ACP) process parameters for bacterial inactivation with further investigation of selected parameters on cell membrane integrity and DNA damage. The effects of high voltage levels, mode of exposure, gas mixture and treatment time agains...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied microbiology 2014-04, Vol.116 (4), p.784-794
Main Authors: Lu, H., Patil, S., Keener, K.M., Cullen, P.J., Bourke, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4496-43ce075f940670d95fa7da5e3da4060779074c7a5bf45d361d11c915775a81683
cites cdi_FETCH-LOGICAL-c4496-43ce075f940670d95fa7da5e3da4060779074c7a5bf45d361d11c915775a81683
container_end_page 794
container_issue 4
container_start_page 784
container_title Journal of applied microbiology
container_volume 116
creator Lu, H.
Patil, S.
Keener, K.M.
Cullen, P.J.
Bourke, P.
description Aims This study investigated a range of atmospheric cold plasma (ACP) process parameters for bacterial inactivation with further investigation of selected parameters on cell membrane integrity and DNA damage. The effects of high voltage levels, mode of exposure, gas mixture and treatment time against Escherichia coli and Listeria monocytogenes were examined. Methods and Results 108 CFU ml−1 E. coli ATCC 25922, E. coli NCTC 12900 and L. monocytogenes NCTC11994 were ACP‐treated in 10 ml phosphate‐buffered saline (PBS). Working gas mixtures used were air (gas mix 1), 90% N2 + 10% O2 (gas mix 2) and 65% O2 + 30% CO2 + 5% N2 (gas mix 3). Greater reduction of viability was observed for all strains using higher voltage of 70 kVRMS and with working gas mixtures with higher oxygen content in combination with direct exposure. Indirect ACP exposure for 30 s inactivated below detection level both E. coli strains. L. monocytogenes inactivation within 30 s was irrespective of the mode of exposure. Leakage was assessed using A260 absorbance, and DNA damage was monitored using PCR and gel electrophoresis. Membrane integrity was compromised after 5 s, with noticeable DNA damage also dependent on the target cell after 30 s. Conclusions Plasma treatment was effective for inactivation of challenge micro‐organisms, with a greater sensitivity of L. monocytogenes noted. Different damage patterns were observed for the different bacterial strains attributed to the membrane structure and potential resistance mechanisms. Significance and Impact of the Study Using atmospheric air as working gas resulted in useful inactivation by comparison with high nitrogen or high oxygen mix. The mechanism of inactivation was a function of treatment duration and cell membrane characteristics, thus offering potential for optimized process parameters specific to the microbial challenge.
doi_str_mv 10.1111/jam.12426
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1508679596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3247834751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4496-43ce075f940670d95fa7da5e3da4060779074c7a5bf45d361d11c915775a81683</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhS0EoqWw4AWQJYREF2nt-C9hN7SFFhXYwDq649gdD04c7KTV7Niw5xl5EjyTASQkvPHV9edzjnQQekrJCc3ndA3dCS15Ke-hQ8qkKEqpyvu7mReCqPIAPUppTQhlRMiH6KDkTJUV4Yfo-2vQo4kOPHZ9Ht0tjC70eLnBK3ez-vntx23wI9wYDGMX0rDKrMY6-BYPHlIHr_I_6yfTa4ODxUMM2qSEB4jQmaycMPQtNtYaPSaclbXxHnsDX3ai-e38w-IxemDBJ_Nkfx-hz28uPp1dFtcf316dLa4LzXktC860IUrYmhOpSFsLC6oFYVgLeUOUqoniWoFYWi5aJmlLqa6pUEpARWXFjtDLWTfH_DqZNDadS9tA0JswpYYKUklVi1pm9Pk_6DpMsc_ptpRSigjBMnU8UzqGlKKxzRBdB3HTUNJsu2lyN82um8w-2ytOy860f8jfZWTgxR6ApMHbCL126S9XlRWbTU9n7s55s_m_Y_Nu8X62_gUEfKWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507770553</pqid></control><display><type>article</type><title>Bacterial inactivation by high‐voltage atmospheric cold plasma: influence of process parameters and effects on cell leakage and DNA</title><source>Alma/SFX Local Collection</source><creator>Lu, H. ; Patil, S. ; Keener, K.M. ; Cullen, P.J. ; Bourke, P.</creator><creatorcontrib>Lu, H. ; Patil, S. ; Keener, K.M. ; Cullen, P.J. ; Bourke, P.</creatorcontrib><description>Aims This study investigated a range of atmospheric cold plasma (ACP) process parameters for bacterial inactivation with further investigation of selected parameters on cell membrane integrity and DNA damage. The effects of high voltage levels, mode of exposure, gas mixture and treatment time against Escherichia coli and Listeria monocytogenes were examined. Methods and Results 108 CFU ml−1 E. coli ATCC 25922, E. coli NCTC 12900 and L. monocytogenes NCTC11994 were ACP‐treated in 10 ml phosphate‐buffered saline (PBS). Working gas mixtures used were air (gas mix 1), 90% N2 + 10% O2 (gas mix 2) and 65% O2 + 30% CO2 + 5% N2 (gas mix 3). Greater reduction of viability was observed for all strains using higher voltage of 70 kVRMS and with working gas mixtures with higher oxygen content in combination with direct exposure. Indirect ACP exposure for 30 s inactivated below detection level both E. coli strains. L. monocytogenes inactivation within 30 s was irrespective of the mode of exposure. Leakage was assessed using A260 absorbance, and DNA damage was monitored using PCR and gel electrophoresis. Membrane integrity was compromised after 5 s, with noticeable DNA damage also dependent on the target cell after 30 s. Conclusions Plasma treatment was effective for inactivation of challenge micro‐organisms, with a greater sensitivity of L. monocytogenes noted. Different damage patterns were observed for the different bacterial strains attributed to the membrane structure and potential resistance mechanisms. Significance and Impact of the Study Using atmospheric air as working gas resulted in useful inactivation by comparison with high nitrogen or high oxygen mix. The mechanism of inactivation was a function of treatment duration and cell membrane characteristics, thus offering potential for optimized process parameters specific to the microbial challenge.</description><identifier>ISSN: 1364-5072</identifier><identifier>EISSN: 1365-2672</identifier><identifier>DOI: 10.1111/jam.12426</identifier><identifier>PMID: 24372804</identifier><identifier>CODEN: JAMIFK</identifier><language>eng</language><publisher>Oxford: Blackwell</publisher><subject>Bacteria ; Biological and medical sciences ; cell integrity ; Cell Membrane - metabolism ; Cellular biology ; DBD‐ACP ; Deoxyribonucleic acid ; DNA ; DNA Damage ; Escherichia coli ; Escherichia coli - growth &amp; development ; Escherichia coli - metabolism ; Fundamental and applied biological sciences. Psychology ; Listeria monocytogenes ; Listeria monocytogenes - growth &amp; development ; Listeria monocytogenes - metabolism ; Microbial Viability ; Microbiology ; Plasma ; Plasma Gases ; Sterilization ; voltage level</subject><ispartof>Journal of applied microbiology, 2014-04, Vol.116 (4), p.784-794</ispartof><rights>2013 The Society for Applied Microbiology</rights><rights>2015 INIST-CNRS</rights><rights>2013 The Society for Applied Microbiology.</rights><rights>Copyright © 2014 The Society for Applied Microbiology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4496-43ce075f940670d95fa7da5e3da4060779074c7a5bf45d361d11c915775a81683</citedby><cites>FETCH-LOGICAL-c4496-43ce075f940670d95fa7da5e3da4060779074c7a5bf45d361d11c915775a81683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28283553$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24372804$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, H.</creatorcontrib><creatorcontrib>Patil, S.</creatorcontrib><creatorcontrib>Keener, K.M.</creatorcontrib><creatorcontrib>Cullen, P.J.</creatorcontrib><creatorcontrib>Bourke, P.</creatorcontrib><title>Bacterial inactivation by high‐voltage atmospheric cold plasma: influence of process parameters and effects on cell leakage and DNA</title><title>Journal of applied microbiology</title><addtitle>J Appl Microbiol</addtitle><description>Aims This study investigated a range of atmospheric cold plasma (ACP) process parameters for bacterial inactivation with further investigation of selected parameters on cell membrane integrity and DNA damage. The effects of high voltage levels, mode of exposure, gas mixture and treatment time against Escherichia coli and Listeria monocytogenes were examined. Methods and Results 108 CFU ml−1 E. coli ATCC 25922, E. coli NCTC 12900 and L. monocytogenes NCTC11994 were ACP‐treated in 10 ml phosphate‐buffered saline (PBS). Working gas mixtures used were air (gas mix 1), 90% N2 + 10% O2 (gas mix 2) and 65% O2 + 30% CO2 + 5% N2 (gas mix 3). Greater reduction of viability was observed for all strains using higher voltage of 70 kVRMS and with working gas mixtures with higher oxygen content in combination with direct exposure. Indirect ACP exposure for 30 s inactivated below detection level both E. coli strains. L. monocytogenes inactivation within 30 s was irrespective of the mode of exposure. Leakage was assessed using A260 absorbance, and DNA damage was monitored using PCR and gel electrophoresis. Membrane integrity was compromised after 5 s, with noticeable DNA damage also dependent on the target cell after 30 s. Conclusions Plasma treatment was effective for inactivation of challenge micro‐organisms, with a greater sensitivity of L. monocytogenes noted. Different damage patterns were observed for the different bacterial strains attributed to the membrane structure and potential resistance mechanisms. Significance and Impact of the Study Using atmospheric air as working gas resulted in useful inactivation by comparison with high nitrogen or high oxygen mix. The mechanism of inactivation was a function of treatment duration and cell membrane characteristics, thus offering potential for optimized process parameters specific to the microbial challenge.</description><subject>Bacteria</subject><subject>Biological and medical sciences</subject><subject>cell integrity</subject><subject>Cell Membrane - metabolism</subject><subject>Cellular biology</subject><subject>DBD‐ACP</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Damage</subject><subject>Escherichia coli</subject><subject>Escherichia coli - growth &amp; development</subject><subject>Escherichia coli - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Listeria monocytogenes</subject><subject>Listeria monocytogenes - growth &amp; development</subject><subject>Listeria monocytogenes - metabolism</subject><subject>Microbial Viability</subject><subject>Microbiology</subject><subject>Plasma</subject><subject>Plasma Gases</subject><subject>Sterilization</subject><subject>voltage level</subject><issn>1364-5072</issn><issn>1365-2672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kc1u1DAUhS0EoqWw4AWQJYREF2nt-C9hN7SFFhXYwDq649gdD04c7KTV7Niw5xl5EjyTASQkvPHV9edzjnQQekrJCc3ndA3dCS15Ke-hQ8qkKEqpyvu7mReCqPIAPUppTQhlRMiH6KDkTJUV4Yfo-2vQo4kOPHZ9Ht0tjC70eLnBK3ez-vntx23wI9wYDGMX0rDKrMY6-BYPHlIHr_I_6yfTa4ODxUMM2qSEB4jQmaycMPQtNtYaPSaclbXxHnsDX3ai-e38w-IxemDBJ_Nkfx-hz28uPp1dFtcf316dLa4LzXktC860IUrYmhOpSFsLC6oFYVgLeUOUqoniWoFYWi5aJmlLqa6pUEpARWXFjtDLWTfH_DqZNDadS9tA0JswpYYKUklVi1pm9Pk_6DpMsc_ptpRSigjBMnU8UzqGlKKxzRBdB3HTUNJsu2lyN82um8w-2ytOy860f8jfZWTgxR6ApMHbCL126S9XlRWbTU9n7s55s_m_Y_Nu8X62_gUEfKWg</recordid><startdate>201404</startdate><enddate>201404</enddate><creator>Lu, H.</creator><creator>Patil, S.</creator><creator>Keener, K.M.</creator><creator>Cullen, P.J.</creator><creator>Bourke, P.</creator><general>Blackwell</general><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201404</creationdate><title>Bacterial inactivation by high‐voltage atmospheric cold plasma: influence of process parameters and effects on cell leakage and DNA</title><author>Lu, H. ; Patil, S. ; Keener, K.M. ; Cullen, P.J. ; Bourke, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4496-43ce075f940670d95fa7da5e3da4060779074c7a5bf45d361d11c915775a81683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bacteria</topic><topic>Biological and medical sciences</topic><topic>cell integrity</topic><topic>Cell Membrane - metabolism</topic><topic>Cellular biology</topic><topic>DBD‐ACP</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Damage</topic><topic>Escherichia coli</topic><topic>Escherichia coli - growth &amp; development</topic><topic>Escherichia coli - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Listeria monocytogenes</topic><topic>Listeria monocytogenes - growth &amp; development</topic><topic>Listeria monocytogenes - metabolism</topic><topic>Microbial Viability</topic><topic>Microbiology</topic><topic>Plasma</topic><topic>Plasma Gases</topic><topic>Sterilization</topic><topic>voltage level</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, H.</creatorcontrib><creatorcontrib>Patil, S.</creatorcontrib><creatorcontrib>Keener, K.M.</creatorcontrib><creatorcontrib>Cullen, P.J.</creatorcontrib><creatorcontrib>Bourke, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of applied microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, H.</au><au>Patil, S.</au><au>Keener, K.M.</au><au>Cullen, P.J.</au><au>Bourke, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial inactivation by high‐voltage atmospheric cold plasma: influence of process parameters and effects on cell leakage and DNA</atitle><jtitle>Journal of applied microbiology</jtitle><addtitle>J Appl Microbiol</addtitle><date>2014-04</date><risdate>2014</risdate><volume>116</volume><issue>4</issue><spage>784</spage><epage>794</epage><pages>784-794</pages><issn>1364-5072</issn><eissn>1365-2672</eissn><coden>JAMIFK</coden><abstract>Aims This study investigated a range of atmospheric cold plasma (ACP) process parameters for bacterial inactivation with further investigation of selected parameters on cell membrane integrity and DNA damage. The effects of high voltage levels, mode of exposure, gas mixture and treatment time against Escherichia coli and Listeria monocytogenes were examined. Methods and Results 108 CFU ml−1 E. coli ATCC 25922, E. coli NCTC 12900 and L. monocytogenes NCTC11994 were ACP‐treated in 10 ml phosphate‐buffered saline (PBS). Working gas mixtures used were air (gas mix 1), 90% N2 + 10% O2 (gas mix 2) and 65% O2 + 30% CO2 + 5% N2 (gas mix 3). Greater reduction of viability was observed for all strains using higher voltage of 70 kVRMS and with working gas mixtures with higher oxygen content in combination with direct exposure. Indirect ACP exposure for 30 s inactivated below detection level both E. coli strains. L. monocytogenes inactivation within 30 s was irrespective of the mode of exposure. Leakage was assessed using A260 absorbance, and DNA damage was monitored using PCR and gel electrophoresis. Membrane integrity was compromised after 5 s, with noticeable DNA damage also dependent on the target cell after 30 s. Conclusions Plasma treatment was effective for inactivation of challenge micro‐organisms, with a greater sensitivity of L. monocytogenes noted. Different damage patterns were observed for the different bacterial strains attributed to the membrane structure and potential resistance mechanisms. Significance and Impact of the Study Using atmospheric air as working gas resulted in useful inactivation by comparison with high nitrogen or high oxygen mix. The mechanism of inactivation was a function of treatment duration and cell membrane characteristics, thus offering potential for optimized process parameters specific to the microbial challenge.</abstract><cop>Oxford</cop><pub>Blackwell</pub><pmid>24372804</pmid><doi>10.1111/jam.12426</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-5072
ispartof Journal of applied microbiology, 2014-04, Vol.116 (4), p.784-794
issn 1364-5072
1365-2672
language eng
recordid cdi_proquest_miscellaneous_1508679596
source Alma/SFX Local Collection
subjects Bacteria
Biological and medical sciences
cell integrity
Cell Membrane - metabolism
Cellular biology
DBD‐ACP
Deoxyribonucleic acid
DNA
DNA Damage
Escherichia coli
Escherichia coli - growth & development
Escherichia coli - metabolism
Fundamental and applied biological sciences. Psychology
Listeria monocytogenes
Listeria monocytogenes - growth & development
Listeria monocytogenes - metabolism
Microbial Viability
Microbiology
Plasma
Plasma Gases
Sterilization
voltage level
title Bacterial inactivation by high‐voltage atmospheric cold plasma: influence of process parameters and effects on cell leakage and DNA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20inactivation%20by%20high%E2%80%90voltage%20atmospheric%20cold%20plasma:%20influence%20of%20process%20parameters%20and%20effects%20on%20cell%20leakage%20and%20DNA&rft.jtitle=Journal%20of%20applied%20microbiology&rft.au=Lu,%20H.&rft.date=2014-04&rft.volume=116&rft.issue=4&rft.spage=784&rft.epage=794&rft.pages=784-794&rft.issn=1364-5072&rft.eissn=1365-2672&rft.coden=JAMIFK&rft_id=info:doi/10.1111/jam.12426&rft_dat=%3Cproquest_cross%3E3247834751%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4496-43ce075f940670d95fa7da5e3da4060779074c7a5bf45d361d11c915775a81683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1507770553&rft_id=info:pmid/24372804&rfr_iscdi=true