Loading…
Regulation of Mitochondrial Dynamics and Cell Fate
Though the mitochondrion was initially identified as a key organelle essentially required for energy production and oxidative metabolism, there is considerable evidence that mitochondria are intimately involved in regulating vital cellular processes, such as programmed cell death, proliferation and...
Saved in:
Published in: | Circulation Journal 2014, Vol.78(4), pp.803-810 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c622t-c639633ec4739556cdfab26879fc7a033ff1358a810af7e9f971ef85259a6ebd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c622t-c639633ec4739556cdfab26879fc7a033ff1358a810af7e9f971ef85259a6ebd3 |
container_end_page | 810 |
container_issue | 4 |
container_start_page | 803 |
container_title | Circulation Journal |
container_volume | 78 |
creator | Dhingra, Rimpy Kirshenbaum, Lorrie A. |
description | Though the mitochondrion was initially identified as a key organelle essentially required for energy production and oxidative metabolism, there is considerable evidence that mitochondria are intimately involved in regulating vital cellular processes, such as programmed cell death, proliferation and autophagy. Discovery of mitochondrial “shaping proteins” (Dynamin-related protein (Drp), mitofusins (Mfn) etc.) has revealed that mitochondria are highly dynamic organelles continually changing morphology by fission and fusion processes. Several human pathologies, including cancer, Parkinson’s disease, Alzheimer’s disease and cardiovascular diseases, have been linked to abnormalities in proteins that govern mitochondrial fission or fusion respectively. Notably, in the context of the heart, defects in mitochondrial dynamics resulting in too many fused and/or fragmented mitochondria have been associated with impaired cardiac development, autophagy, and contractile dysfunction. Understanding the mechanisms that govern mitochondrial fission/fusion is paramount in developing new treatment strategies for human diseases in which defects in fission or fusion is the primary underlying defect. Here, we provide a comprehensive overview of the cellular targets and molecular signaling pathways that govern mitochondrial dynamics under normal and disease conditions. (Circ J 2014; 78: 803–810) |
doi_str_mv | 10.1253/circj.CJ-14-0240 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1511397838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1511397838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-c639633ec4739556cdfab26879fc7a033ff1358a810af7e9f971ef85259a6ebd3</originalsourceid><addsrcrecordid>eNpFkD1PwzAQhi0EoqWwM6GMLCn-SmyPKFCgKkJCMFtXx25dpUmxk6H_nvQDutzd8LyvTg9CtwSPCc3Yg_HBrMbFNCU8xZTjMzQkjIuUS4rP93eeKsnZAF3FuMKYKpypSzSgPOeCEzpE9NMuugpa39RJ45J33zZm2dRl8FAlT9sa1t7EBOoyKWxVJRNo7TW6cFBFe3PcI_Q9ef4qXtPZx8tb8ThLTU5p20-mcsas4YKpLMtN6WBOcymUMwIwY84RlkmQBIMTVjkliHUyo5mC3M5LNkL3h95NaH46G1u99tH0X0Btmy5qkhHClJBM9ig-oCY0MQbr9Cb4NYStJljvTOm9KV1MNeF6Z6qP3B3bu_nalv-BPzU9MDkAq9jCwv4DEFpvKntsFFLz3Tg1n4AlBG1r9gsN8n03</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1511397838</pqid></control><display><type>article</type><title>Regulation of Mitochondrial Dynamics and Cell Fate</title><source>Medical Journals</source><creator>Dhingra, Rimpy ; Kirshenbaum, Lorrie A.</creator><creatorcontrib>Dhingra, Rimpy ; Kirshenbaum, Lorrie A.</creatorcontrib><description>Though the mitochondrion was initially identified as a key organelle essentially required for energy production and oxidative metabolism, there is considerable evidence that mitochondria are intimately involved in regulating vital cellular processes, such as programmed cell death, proliferation and autophagy. Discovery of mitochondrial “shaping proteins” (Dynamin-related protein (Drp), mitofusins (Mfn) etc.) has revealed that mitochondria are highly dynamic organelles continually changing morphology by fission and fusion processes. Several human pathologies, including cancer, Parkinson’s disease, Alzheimer’s disease and cardiovascular diseases, have been linked to abnormalities in proteins that govern mitochondrial fission or fusion respectively. Notably, in the context of the heart, defects in mitochondrial dynamics resulting in too many fused and/or fragmented mitochondria have been associated with impaired cardiac development, autophagy, and contractile dysfunction. Understanding the mechanisms that govern mitochondrial fission/fusion is paramount in developing new treatment strategies for human diseases in which defects in fission or fusion is the primary underlying defect. Here, we provide a comprehensive overview of the cellular targets and molecular signaling pathways that govern mitochondrial dynamics under normal and disease conditions. (Circ J 2014; 78: 803–810)</description><identifier>ISSN: 1346-9843</identifier><identifier>EISSN: 1347-4820</identifier><identifier>DOI: 10.1253/circj.CJ-14-0240</identifier><identifier>PMID: 24647412</identifier><language>eng</language><publisher>Japan: The Japanese Circulation Society</publisher><subject>Alzheimer Disease - genetics ; Alzheimer Disease - metabolism ; Alzheimer Disease - pathology ; Animals ; Cardiovascular Diseases - genetics ; Cardiovascular Diseases - metabolism ; Cardiovascular Diseases - pathology ; Cell death ; Drp1 ; Dynamins - immunology ; Dynamins - metabolism ; Fission ; Fusion ; Humans ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondria - pathology ; Mitochondrial Dynamics - genetics ; Mitochondrial Membrane Transport Proteins - genetics ; Mitochondrial Membrane Transport Proteins - metabolism ; Mitochondrion ; Parkinson Disease - genetics ; Parkinson Disease - metabolism ; Parkinson Disease - pathology</subject><ispartof>Circulation Journal, 2014, Vol.78(4), pp.803-810</ispartof><rights>2014 THE JAPANESE CIRCULATION SOCIETY</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-c639633ec4739556cdfab26879fc7a033ff1358a810af7e9f971ef85259a6ebd3</citedby><cites>FETCH-LOGICAL-c622t-c639633ec4739556cdfab26879fc7a033ff1358a810af7e9f971ef85259a6ebd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24647412$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dhingra, Rimpy</creatorcontrib><creatorcontrib>Kirshenbaum, Lorrie A.</creatorcontrib><title>Regulation of Mitochondrial Dynamics and Cell Fate</title><title>Circulation Journal</title><addtitle>Circ J</addtitle><description>Though the mitochondrion was initially identified as a key organelle essentially required for energy production and oxidative metabolism, there is considerable evidence that mitochondria are intimately involved in regulating vital cellular processes, such as programmed cell death, proliferation and autophagy. Discovery of mitochondrial “shaping proteins” (Dynamin-related protein (Drp), mitofusins (Mfn) etc.) has revealed that mitochondria are highly dynamic organelles continually changing morphology by fission and fusion processes. Several human pathologies, including cancer, Parkinson’s disease, Alzheimer’s disease and cardiovascular diseases, have been linked to abnormalities in proteins that govern mitochondrial fission or fusion respectively. Notably, in the context of the heart, defects in mitochondrial dynamics resulting in too many fused and/or fragmented mitochondria have been associated with impaired cardiac development, autophagy, and contractile dysfunction. Understanding the mechanisms that govern mitochondrial fission/fusion is paramount in developing new treatment strategies for human diseases in which defects in fission or fusion is the primary underlying defect. Here, we provide a comprehensive overview of the cellular targets and molecular signaling pathways that govern mitochondrial dynamics under normal and disease conditions. (Circ J 2014; 78: 803–810)</description><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer Disease - pathology</subject><subject>Animals</subject><subject>Cardiovascular Diseases - genetics</subject><subject>Cardiovascular Diseases - metabolism</subject><subject>Cardiovascular Diseases - pathology</subject><subject>Cell death</subject><subject>Drp1</subject><subject>Dynamins - immunology</subject><subject>Dynamins - metabolism</subject><subject>Fission</subject><subject>Fusion</subject><subject>Humans</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Mitochondrial Dynamics - genetics</subject><subject>Mitochondrial Membrane Transport Proteins - genetics</subject><subject>Mitochondrial Membrane Transport Proteins - metabolism</subject><subject>Mitochondrion</subject><subject>Parkinson Disease - genetics</subject><subject>Parkinson Disease - metabolism</subject><subject>Parkinson Disease - pathology</subject><issn>1346-9843</issn><issn>1347-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkD1PwzAQhi0EoqWwM6GMLCn-SmyPKFCgKkJCMFtXx25dpUmxk6H_nvQDutzd8LyvTg9CtwSPCc3Yg_HBrMbFNCU8xZTjMzQkjIuUS4rP93eeKsnZAF3FuMKYKpypSzSgPOeCEzpE9NMuugpa39RJ45J33zZm2dRl8FAlT9sa1t7EBOoyKWxVJRNo7TW6cFBFe3PcI_Q9ef4qXtPZx8tb8ThLTU5p20-mcsas4YKpLMtN6WBOcymUMwIwY84RlkmQBIMTVjkliHUyo5mC3M5LNkL3h95NaH46G1u99tH0X0Btmy5qkhHClJBM9ig-oCY0MQbr9Cb4NYStJljvTOm9KV1MNeF6Z6qP3B3bu_nalv-BPzU9MDkAq9jCwv4DEFpvKntsFFLz3Tg1n4AlBG1r9gsN8n03</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Dhingra, Rimpy</creator><creator>Kirshenbaum, Lorrie A.</creator><general>The Japanese Circulation Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>2014</creationdate><title>Regulation of Mitochondrial Dynamics and Cell Fate</title><author>Dhingra, Rimpy ; Kirshenbaum, Lorrie A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-c639633ec4739556cdfab26879fc7a033ff1358a810af7e9f971ef85259a6ebd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer Disease - pathology</topic><topic>Animals</topic><topic>Cardiovascular Diseases - genetics</topic><topic>Cardiovascular Diseases - metabolism</topic><topic>Cardiovascular Diseases - pathology</topic><topic>Cell death</topic><topic>Drp1</topic><topic>Dynamins - immunology</topic><topic>Dynamins - metabolism</topic><topic>Fission</topic><topic>Fusion</topic><topic>Humans</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Mitochondrial Dynamics - genetics</topic><topic>Mitochondrial Membrane Transport Proteins - genetics</topic><topic>Mitochondrial Membrane Transport Proteins - metabolism</topic><topic>Mitochondrion</topic><topic>Parkinson Disease - genetics</topic><topic>Parkinson Disease - metabolism</topic><topic>Parkinson Disease - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhingra, Rimpy</creatorcontrib><creatorcontrib>Kirshenbaum, Lorrie A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhingra, Rimpy</au><au>Kirshenbaum, Lorrie A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of Mitochondrial Dynamics and Cell Fate</atitle><jtitle>Circulation Journal</jtitle><addtitle>Circ J</addtitle><date>2014</date><risdate>2014</risdate><volume>78</volume><issue>4</issue><spage>803</spage><epage>810</epage><pages>803-810</pages><issn>1346-9843</issn><eissn>1347-4820</eissn><abstract>Though the mitochondrion was initially identified as a key organelle essentially required for energy production and oxidative metabolism, there is considerable evidence that mitochondria are intimately involved in regulating vital cellular processes, such as programmed cell death, proliferation and autophagy. Discovery of mitochondrial “shaping proteins” (Dynamin-related protein (Drp), mitofusins (Mfn) etc.) has revealed that mitochondria are highly dynamic organelles continually changing morphology by fission and fusion processes. Several human pathologies, including cancer, Parkinson’s disease, Alzheimer’s disease and cardiovascular diseases, have been linked to abnormalities in proteins that govern mitochondrial fission or fusion respectively. Notably, in the context of the heart, defects in mitochondrial dynamics resulting in too many fused and/or fragmented mitochondria have been associated with impaired cardiac development, autophagy, and contractile dysfunction. Understanding the mechanisms that govern mitochondrial fission/fusion is paramount in developing new treatment strategies for human diseases in which defects in fission or fusion is the primary underlying defect. Here, we provide a comprehensive overview of the cellular targets and molecular signaling pathways that govern mitochondrial dynamics under normal and disease conditions. (Circ J 2014; 78: 803–810)</abstract><cop>Japan</cop><pub>The Japanese Circulation Society</pub><pmid>24647412</pmid><doi>10.1253/circj.CJ-14-0240</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1346-9843 |
ispartof | Circulation Journal, 2014, Vol.78(4), pp.803-810 |
issn | 1346-9843 1347-4820 |
language | eng |
recordid | cdi_proquest_miscellaneous_1511397838 |
source | Medical Journals |
subjects | Alzheimer Disease - genetics Alzheimer Disease - metabolism Alzheimer Disease - pathology Animals Cardiovascular Diseases - genetics Cardiovascular Diseases - metabolism Cardiovascular Diseases - pathology Cell death Drp1 Dynamins - immunology Dynamins - metabolism Fission Fusion Humans Mitochondria - genetics Mitochondria - metabolism Mitochondria - pathology Mitochondrial Dynamics - genetics Mitochondrial Membrane Transport Proteins - genetics Mitochondrial Membrane Transport Proteins - metabolism Mitochondrion Parkinson Disease - genetics Parkinson Disease - metabolism Parkinson Disease - pathology |
title | Regulation of Mitochondrial Dynamics and Cell Fate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20Mitochondrial%20Dynamics%20and%20Cell%20Fate&rft.jtitle=Circulation%20Journal&rft.au=Dhingra,%20Rimpy&rft.date=2014&rft.volume=78&rft.issue=4&rft.spage=803&rft.epage=810&rft.pages=803-810&rft.issn=1346-9843&rft.eissn=1347-4820&rft_id=info:doi/10.1253/circj.CJ-14-0240&rft_dat=%3Cproquest_cross%3E1511397838%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c622t-c639633ec4739556cdfab26879fc7a033ff1358a810af7e9f971ef85259a6ebd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1511397838&rft_id=info:pmid/24647412&rfr_iscdi=true |