Loading…

Regulation of Mitochondrial Dynamics and Cell Fate

Though the mitochondrion was initially identified as a key organelle essentially required for energy production and oxidative metabolism, there is considerable evidence that mitochondria are intimately involved in regulating vital cellular processes, such as programmed cell death, proliferation and...

Full description

Saved in:
Bibliographic Details
Published in:Circulation Journal 2014, Vol.78(4), pp.803-810
Main Authors: Dhingra, Rimpy, Kirshenbaum, Lorrie A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c622t-c639633ec4739556cdfab26879fc7a033ff1358a810af7e9f971ef85259a6ebd3
cites cdi_FETCH-LOGICAL-c622t-c639633ec4739556cdfab26879fc7a033ff1358a810af7e9f971ef85259a6ebd3
container_end_page 810
container_issue 4
container_start_page 803
container_title Circulation Journal
container_volume 78
creator Dhingra, Rimpy
Kirshenbaum, Lorrie A.
description Though the mitochondrion was initially identified as a key organelle essentially required for energy production and oxidative metabolism, there is considerable evidence that mitochondria are intimately involved in regulating vital cellular processes, such as programmed cell death, proliferation and autophagy. Discovery of mitochondrial “shaping proteins” (Dynamin-related protein (Drp), mitofusins (Mfn) etc.) has revealed that mitochondria are highly dynamic organelles continually changing morphology by fission and fusion processes. Several human pathologies, including cancer, Parkinson’s disease, Alzheimer’s disease and cardiovascular diseases, have been linked to abnormalities in proteins that govern mitochondrial fission or fusion respectively. Notably, in the context of the heart, defects in mitochondrial dynamics resulting in too many fused and/or fragmented mitochondria have been associated with impaired cardiac development, autophagy, and contractile dysfunction. Understanding the mechanisms that govern mitochondrial fission/fusion is paramount in developing new treatment strategies for human diseases in which defects in fission or fusion is the primary underlying defect. Here, we provide a comprehensive overview of the cellular targets and molecular signaling pathways that govern mitochondrial dynamics under normal and disease conditions.  (Circ J 2014; 78: 803–810)
doi_str_mv 10.1253/circj.CJ-14-0240
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1511397838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1511397838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-c639633ec4739556cdfab26879fc7a033ff1358a810af7e9f971ef85259a6ebd3</originalsourceid><addsrcrecordid>eNpFkD1PwzAQhi0EoqWwM6GMLCn-SmyPKFCgKkJCMFtXx25dpUmxk6H_nvQDutzd8LyvTg9CtwSPCc3Yg_HBrMbFNCU8xZTjMzQkjIuUS4rP93eeKsnZAF3FuMKYKpypSzSgPOeCEzpE9NMuugpa39RJ45J33zZm2dRl8FAlT9sa1t7EBOoyKWxVJRNo7TW6cFBFe3PcI_Q9ef4qXtPZx8tb8ThLTU5p20-mcsas4YKpLMtN6WBOcymUMwIwY84RlkmQBIMTVjkliHUyo5mC3M5LNkL3h95NaH46G1u99tH0X0Btmy5qkhHClJBM9ig-oCY0MQbr9Cb4NYStJljvTOm9KV1MNeF6Z6qP3B3bu_nalv-BPzU9MDkAq9jCwv4DEFpvKntsFFLz3Tg1n4AlBG1r9gsN8n03</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1511397838</pqid></control><display><type>article</type><title>Regulation of Mitochondrial Dynamics and Cell Fate</title><source>Medical Journals</source><creator>Dhingra, Rimpy ; Kirshenbaum, Lorrie A.</creator><creatorcontrib>Dhingra, Rimpy ; Kirshenbaum, Lorrie A.</creatorcontrib><description>Though the mitochondrion was initially identified as a key organelle essentially required for energy production and oxidative metabolism, there is considerable evidence that mitochondria are intimately involved in regulating vital cellular processes, such as programmed cell death, proliferation and autophagy. Discovery of mitochondrial “shaping proteins” (Dynamin-related protein (Drp), mitofusins (Mfn) etc.) has revealed that mitochondria are highly dynamic organelles continually changing morphology by fission and fusion processes. Several human pathologies, including cancer, Parkinson’s disease, Alzheimer’s disease and cardiovascular diseases, have been linked to abnormalities in proteins that govern mitochondrial fission or fusion respectively. Notably, in the context of the heart, defects in mitochondrial dynamics resulting in too many fused and/or fragmented mitochondria have been associated with impaired cardiac development, autophagy, and contractile dysfunction. Understanding the mechanisms that govern mitochondrial fission/fusion is paramount in developing new treatment strategies for human diseases in which defects in fission or fusion is the primary underlying defect. Here, we provide a comprehensive overview of the cellular targets and molecular signaling pathways that govern mitochondrial dynamics under normal and disease conditions.  (Circ J 2014; 78: 803–810)</description><identifier>ISSN: 1346-9843</identifier><identifier>EISSN: 1347-4820</identifier><identifier>DOI: 10.1253/circj.CJ-14-0240</identifier><identifier>PMID: 24647412</identifier><language>eng</language><publisher>Japan: The Japanese Circulation Society</publisher><subject>Alzheimer Disease - genetics ; Alzheimer Disease - metabolism ; Alzheimer Disease - pathology ; Animals ; Cardiovascular Diseases - genetics ; Cardiovascular Diseases - metabolism ; Cardiovascular Diseases - pathology ; Cell death ; Drp1 ; Dynamins - immunology ; Dynamins - metabolism ; Fission ; Fusion ; Humans ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondria - pathology ; Mitochondrial Dynamics - genetics ; Mitochondrial Membrane Transport Proteins - genetics ; Mitochondrial Membrane Transport Proteins - metabolism ; Mitochondrion ; Parkinson Disease - genetics ; Parkinson Disease - metabolism ; Parkinson Disease - pathology</subject><ispartof>Circulation Journal, 2014, Vol.78(4), pp.803-810</ispartof><rights>2014 THE JAPANESE CIRCULATION SOCIETY</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-c639633ec4739556cdfab26879fc7a033ff1358a810af7e9f971ef85259a6ebd3</citedby><cites>FETCH-LOGICAL-c622t-c639633ec4739556cdfab26879fc7a033ff1358a810af7e9f971ef85259a6ebd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24647412$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dhingra, Rimpy</creatorcontrib><creatorcontrib>Kirshenbaum, Lorrie A.</creatorcontrib><title>Regulation of Mitochondrial Dynamics and Cell Fate</title><title>Circulation Journal</title><addtitle>Circ J</addtitle><description>Though the mitochondrion was initially identified as a key organelle essentially required for energy production and oxidative metabolism, there is considerable evidence that mitochondria are intimately involved in regulating vital cellular processes, such as programmed cell death, proliferation and autophagy. Discovery of mitochondrial “shaping proteins” (Dynamin-related protein (Drp), mitofusins (Mfn) etc.) has revealed that mitochondria are highly dynamic organelles continually changing morphology by fission and fusion processes. Several human pathologies, including cancer, Parkinson’s disease, Alzheimer’s disease and cardiovascular diseases, have been linked to abnormalities in proteins that govern mitochondrial fission or fusion respectively. Notably, in the context of the heart, defects in mitochondrial dynamics resulting in too many fused and/or fragmented mitochondria have been associated with impaired cardiac development, autophagy, and contractile dysfunction. Understanding the mechanisms that govern mitochondrial fission/fusion is paramount in developing new treatment strategies for human diseases in which defects in fission or fusion is the primary underlying defect. Here, we provide a comprehensive overview of the cellular targets and molecular signaling pathways that govern mitochondrial dynamics under normal and disease conditions.  (Circ J 2014; 78: 803–810)</description><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer Disease - pathology</subject><subject>Animals</subject><subject>Cardiovascular Diseases - genetics</subject><subject>Cardiovascular Diseases - metabolism</subject><subject>Cardiovascular Diseases - pathology</subject><subject>Cell death</subject><subject>Drp1</subject><subject>Dynamins - immunology</subject><subject>Dynamins - metabolism</subject><subject>Fission</subject><subject>Fusion</subject><subject>Humans</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Mitochondrial Dynamics - genetics</subject><subject>Mitochondrial Membrane Transport Proteins - genetics</subject><subject>Mitochondrial Membrane Transport Proteins - metabolism</subject><subject>Mitochondrion</subject><subject>Parkinson Disease - genetics</subject><subject>Parkinson Disease - metabolism</subject><subject>Parkinson Disease - pathology</subject><issn>1346-9843</issn><issn>1347-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkD1PwzAQhi0EoqWwM6GMLCn-SmyPKFCgKkJCMFtXx25dpUmxk6H_nvQDutzd8LyvTg9CtwSPCc3Yg_HBrMbFNCU8xZTjMzQkjIuUS4rP93eeKsnZAF3FuMKYKpypSzSgPOeCEzpE9NMuugpa39RJ45J33zZm2dRl8FAlT9sa1t7EBOoyKWxVJRNo7TW6cFBFe3PcI_Q9ef4qXtPZx8tb8ThLTU5p20-mcsas4YKpLMtN6WBOcymUMwIwY84RlkmQBIMTVjkliHUyo5mC3M5LNkL3h95NaH46G1u99tH0X0Btmy5qkhHClJBM9ig-oCY0MQbr9Cb4NYStJljvTOm9KV1MNeF6Z6qP3B3bu_nalv-BPzU9MDkAq9jCwv4DEFpvKntsFFLz3Tg1n4AlBG1r9gsN8n03</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Dhingra, Rimpy</creator><creator>Kirshenbaum, Lorrie A.</creator><general>The Japanese Circulation Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>2014</creationdate><title>Regulation of Mitochondrial Dynamics and Cell Fate</title><author>Dhingra, Rimpy ; Kirshenbaum, Lorrie A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-c639633ec4739556cdfab26879fc7a033ff1358a810af7e9f971ef85259a6ebd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer Disease - pathology</topic><topic>Animals</topic><topic>Cardiovascular Diseases - genetics</topic><topic>Cardiovascular Diseases - metabolism</topic><topic>Cardiovascular Diseases - pathology</topic><topic>Cell death</topic><topic>Drp1</topic><topic>Dynamins - immunology</topic><topic>Dynamins - metabolism</topic><topic>Fission</topic><topic>Fusion</topic><topic>Humans</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Mitochondrial Dynamics - genetics</topic><topic>Mitochondrial Membrane Transport Proteins - genetics</topic><topic>Mitochondrial Membrane Transport Proteins - metabolism</topic><topic>Mitochondrion</topic><topic>Parkinson Disease - genetics</topic><topic>Parkinson Disease - metabolism</topic><topic>Parkinson Disease - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhingra, Rimpy</creatorcontrib><creatorcontrib>Kirshenbaum, Lorrie A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhingra, Rimpy</au><au>Kirshenbaum, Lorrie A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of Mitochondrial Dynamics and Cell Fate</atitle><jtitle>Circulation Journal</jtitle><addtitle>Circ J</addtitle><date>2014</date><risdate>2014</risdate><volume>78</volume><issue>4</issue><spage>803</spage><epage>810</epage><pages>803-810</pages><issn>1346-9843</issn><eissn>1347-4820</eissn><abstract>Though the mitochondrion was initially identified as a key organelle essentially required for energy production and oxidative metabolism, there is considerable evidence that mitochondria are intimately involved in regulating vital cellular processes, such as programmed cell death, proliferation and autophagy. Discovery of mitochondrial “shaping proteins” (Dynamin-related protein (Drp), mitofusins (Mfn) etc.) has revealed that mitochondria are highly dynamic organelles continually changing morphology by fission and fusion processes. Several human pathologies, including cancer, Parkinson’s disease, Alzheimer’s disease and cardiovascular diseases, have been linked to abnormalities in proteins that govern mitochondrial fission or fusion respectively. Notably, in the context of the heart, defects in mitochondrial dynamics resulting in too many fused and/or fragmented mitochondria have been associated with impaired cardiac development, autophagy, and contractile dysfunction. Understanding the mechanisms that govern mitochondrial fission/fusion is paramount in developing new treatment strategies for human diseases in which defects in fission or fusion is the primary underlying defect. Here, we provide a comprehensive overview of the cellular targets and molecular signaling pathways that govern mitochondrial dynamics under normal and disease conditions.  (Circ J 2014; 78: 803–810)</abstract><cop>Japan</cop><pub>The Japanese Circulation Society</pub><pmid>24647412</pmid><doi>10.1253/circj.CJ-14-0240</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1346-9843
ispartof Circulation Journal, 2014, Vol.78(4), pp.803-810
issn 1346-9843
1347-4820
language eng
recordid cdi_proquest_miscellaneous_1511397838
source Medical Journals
subjects Alzheimer Disease - genetics
Alzheimer Disease - metabolism
Alzheimer Disease - pathology
Animals
Cardiovascular Diseases - genetics
Cardiovascular Diseases - metabolism
Cardiovascular Diseases - pathology
Cell death
Drp1
Dynamins - immunology
Dynamins - metabolism
Fission
Fusion
Humans
Mitochondria - genetics
Mitochondria - metabolism
Mitochondria - pathology
Mitochondrial Dynamics - genetics
Mitochondrial Membrane Transport Proteins - genetics
Mitochondrial Membrane Transport Proteins - metabolism
Mitochondrion
Parkinson Disease - genetics
Parkinson Disease - metabolism
Parkinson Disease - pathology
title Regulation of Mitochondrial Dynamics and Cell Fate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20Mitochondrial%20Dynamics%20and%20Cell%20Fate&rft.jtitle=Circulation%20Journal&rft.au=Dhingra,%20Rimpy&rft.date=2014&rft.volume=78&rft.issue=4&rft.spage=803&rft.epage=810&rft.pages=803-810&rft.issn=1346-9843&rft.eissn=1347-4820&rft_id=info:doi/10.1253/circj.CJ-14-0240&rft_dat=%3Cproquest_cross%3E1511397838%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c622t-c639633ec4739556cdfab26879fc7a033ff1358a810af7e9f971ef85259a6ebd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1511397838&rft_id=info:pmid/24647412&rfr_iscdi=true